Pregunta
upstudy study bank question image url

Find the critical points of the following function. Use the Second Derivative Test to determine (if possible) whether each
critical point corresponds to a local maximum, local minimum, or saddle point. If the Second Derivative Test
is inconclusive, determine the behavior of the function at the critical points.

What are the critical points?

(Type an ordered pair. Use a comma to separate answers as needed.)
Use the Second Derivative Test to find the local maxima. Select the correct choice below and fill in any answer boxes
within your choice.
A. The test shows that there is/are local maxima at
(Type an ordered pair. Use a comma to separate answers as needed.)
B. The test does not reveal any local maxima and there are no critical points for which the test is inconclusive, so
there are no local maxima.
c. The test does not reveal any local maxima, but there is at least one critical point for which the test is
inconclusive.

Ask by Ford Kelley. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Critical Points:
Local Maxima:
A. The test shows that there is a local minimum at .

Solución

To find the critical points of the function , we need to follow these steps:
  1. Find the first derivatives and .
  2. Set the first derivatives equal to zero to find the critical points.
  3. Find the second derivatives , , and .
  4. Use the Second Derivative Test to classify the critical points.

Step 1: Find the first derivatives

The first derivatives are:

Step 2: Set the first derivatives equal to zero

Setting and :
Thus, the critical point is .

Step 3: Find the second derivatives

The second derivatives are:

Step 4: Evaluate the second derivatives at the critical point

Now we evaluate the second derivatives at the critical point :

Step 5: Apply the Second Derivative Test

The determinant is given by:
Since and , the critical point is a local minimum.

Conclusion

  • The critical point is .
  • There are local minima at .
Thus, the answer is:
Critical Points:
Local Maxima:
A. The test shows that there is/are local maxima at .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the critical points of the function , we first calculate the first derivatives:
and . Setting these equal to zero, we find critical points occur where and , leading us to the critical point .
Now applying the Second Derivative Test, we calculate the second partial derivatives:
, , and . Evaluating these at the critical point gives and . The determinant is positive, and since , the point is a local minimum.
The final responses are:
Critical points:
A. The test shows that there is a local maxima at: None. (So, option B is correct. There are no local maxima.)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad