Pregunta
- Let
Find the value of
so that
exists.
Ask by Campbell O'Quinn. in South Africa
Mar 29,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
To ensure the limit
exists, set the left-hand limit equal to the right-hand limit:
Squaring both sides:
Solving for
:
So,
.
Solución
-
For
, the function is defined as The left-hand limit asapproaches 2 is -
For
, the function is defined as The right-hand limit asapproaches 2 is -
For the overall limit
to exist, the left-hand and right-hand limits must be equal. Therefore, we set -
Squaring both sides gives
-
Solving for
:
Thus, the value of
is
.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To find the value of
so that
exists, we need to ensure that the left-hand limit and the right-hand limit of
as
approaches 2 are equal.
First, we find the left-hand limit as
approaches 2:
Next, we find the right-hand limit as
approaches 2:
For the limit to exist, we need both limits to be equal:
Now, we square both sides to eliminate the square root:
Subtracting 2 from both sides gives:
Thus, the value of
so that
exists is
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium