Pregunta
upstudy study bank question image url

Use the change of base formula to compute \( \log _{6} \frac{1}{8} \). Round your answer to the nearest thousandth.

Ask by Campbell Rodriquez. in the United States
Nov 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified answer is \( \log_{6} \frac{1}{8} \approx -1.161 \).

Solución

To compute \( \log_{6} \frac{1}{8} \) using the change of base formula, we can express the logarithm in terms of the natural logarithm (ln) or the common logarithm (log). The change of base formula is: \[ \log_{b} a = \frac{\log_{c} a}{\log_{c} b} \] where \( c \) is the base of the new logarithm. We can choose \( c \) to be either \( e \) (the base of the natural logarithm) or 10 (the base of the common logarithm). For this problem, let's use the natural logarithm (ln) and the base \( e \): \[ \log_{6} \frac{1}{8} = \frac{\ln \left( \frac{1}{8} \right)}{\ln 6} \] Now, let's calculate the natural logarithms of \( \frac{1}{8} \) and 6: \[ \ln \left( \frac{1}{8} \right) = \ln \left( 8^{-1} \right) = -\ln 8 \] \[ \ln 8 = \ln (2^3) = 3 \ln 2 \] We can use the known value of \( \ln 2 \) which is approximately 0.69314718056. Therefore: \[ \ln 8 = 3 \times 0.69314718056 \approx 2.07944154268 \] So, \[ \ln \left( \frac{1}{8} \right) = -2.07944154268 \] Now, let's calculate \( \ln 6 \): \[ \ln 6 = \ln (2 \times 3) = \ln 2 + \ln 3 \] We already know \( \ln 2 \approx 0.69314718056 \), and \( \ln 3 \) is approximately 1.09861228866. Therefore: \[ \ln 6 = 0.69314718056 + 1.09861228866 \approx 1.79175946922 \] Now we can put it all together: \[ \log_{6} \frac{1}{8} = \frac{-2.07944154268}{1.79175946922} \approx -1.161 \] Rounded to the nearest thousandth, the answer is: \[ \log_{6} \frac{1}{8} \approx -1.161 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To compute \( \log_{6} \frac{1}{8} \) using the change of base formula, you can express the logarithm in terms of natural logarithms or common logarithms. Let's use natural logarithms for this example: \[ \log_{6} \frac{1}{8} = \frac{\ln \left( \frac{1}{8} \right)}{\ln 6} \] Now, calculate each part. Start with \( \ln \left( \frac{1}{8} \right) \): \[ \ln \left( \frac{1}{8} \right) = \ln(1) - \ln(8) = 0 - \ln(8) = -\ln(8) \] We know that \( 8 = 2^3 \), thus: \[ \ln(8) = \ln(2^3) = 3 \ln(2) \] So, \[ \ln \left( \frac{1}{8} \right) = -3 \ln(2) \] Next, we need \( \ln(6) \): \[ \ln(6) = \ln(2 \cdot 3) = \ln(2) + \ln(3) \] Now, substituting back into the change of base formula gives: \[ \log_{6} \frac{1}{8} = \frac{-3 \ln(2)}{\ln(2) + \ln(3)} \] Using approximate values: - \( \ln(2) \approx 0.693 \) - \( \ln(3) \approx 1.099 \) Then, \[ \ln(2) + \ln(3) \approx 0.693 + 1.099 = 1.792 \] Now calculate \( \log_{6} \frac{1}{8} \): \[ \log_{6} \frac{1}{8} \approx \frac{-3(0.693)}{1.792} \approx \frac{-2.079}{1.792} \approx -1.16 \] Rounding this to the nearest thousandth, you will find: \[ \log_{6} \frac{1}{8} \approx -1.160 \] Thus, the answer is: \[ \log_{6} \frac{1}{8} \approx -1.160 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad