Use the change of base formula to compute \( \log _{6} \frac{1}{8} \). Round your answer to the nearest thousandth.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To compute \( \log_{6} \frac{1}{8} \) using the change of base formula, you can express the logarithm in terms of natural logarithms or common logarithms. Let's use natural logarithms for this example: \[ \log_{6} \frac{1}{8} = \frac{\ln \left( \frac{1}{8} \right)}{\ln 6} \] Now, calculate each part. Start with \( \ln \left( \frac{1}{8} \right) \): \[ \ln \left( \frac{1}{8} \right) = \ln(1) - \ln(8) = 0 - \ln(8) = -\ln(8) \] We know that \( 8 = 2^3 \), thus: \[ \ln(8) = \ln(2^3) = 3 \ln(2) \] So, \[ \ln \left( \frac{1}{8} \right) = -3 \ln(2) \] Next, we need \( \ln(6) \): \[ \ln(6) = \ln(2 \cdot 3) = \ln(2) + \ln(3) \] Now, substituting back into the change of base formula gives: \[ \log_{6} \frac{1}{8} = \frac{-3 \ln(2)}{\ln(2) + \ln(3)} \] Using approximate values: - \( \ln(2) \approx 0.693 \) - \( \ln(3) \approx 1.099 \) Then, \[ \ln(2) + \ln(3) \approx 0.693 + 1.099 = 1.792 \] Now calculate \( \log_{6} \frac{1}{8} \): \[ \log_{6} \frac{1}{8} \approx \frac{-3(0.693)}{1.792} \approx \frac{-2.079}{1.792} \approx -1.16 \] Rounding this to the nearest thousandth, you will find: \[ \log_{6} \frac{1}{8} \approx -1.160 \] Thus, the answer is: \[ \log_{6} \frac{1}{8} \approx -1.160 \]
