QUESTION 7 7.1 Determine \( f^{\prime}(x) \) from first principles if \( f(x)=\frac{1}{x} \). 7.2 Determine: 7.2.1 \( \frac{d}{d x}\left(\sqrt{4 x^{6}}+\sqrt{2} \cdot x^{2}\right) \) 7.2.2 \( g^{\prime}(x) \) if \( g(x)=\frac{3 x^{4}-4 x^{2}+6}{x^{2}} \) (3) 7.3 The equation of the tangent to \( f(x)=3 x^{2}+b x+c \) at \( x=1 \) is given by \( y=9 x-9 \). Determine the values of \( b \) and \( c \). (4) [15]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find \( f^{\prime}(x) \) from first principles for \( f(x)=\frac{1}{x} \), we start with the definition of the derivative: \[ f^{\prime}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{x - (x+h)}{h \cdot x(x+h)} = \lim_{h \to 0} \frac{-h}{h \cdot x(x+h)}. \] This simplifies to: \[ f^{\prime}(x) = \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}. \] In resolving \( \frac{d}{d x}\left(\sqrt{4 x^{6}}+\sqrt{2} \cdot x^{2}\right) \), we first simplify: \[ \sqrt{4 x^6} = 2x^{3}, \text{ so } f(x) = 2x^{3} + \sqrt{2}x^{2}. \] Now, using the power rule, we differentiate: \[ \frac{d}{dx}(2x^{3}) = 6x^{2}, \quad \frac{d}{dx}(\sqrt{2}x^{2}) = 2\sqrt{2}x. \] So, \[ \frac{d}{dx}\left(\sqrt{4x^{6}}+\sqrt{2} \cdot x^{2}\right) = 6x^{2} + 2\sqrt{2}x. \] For \( g^{\prime}(x) \) where \( g(x) = \frac{3x^4 - 4x^2 + 6}{x^2} \), we can use the quotient rule: \[ g^{\prime}(x) = \frac{(12x^3 - 8x)(x^{2}) - (3x^4 - 4x^2 + 6)(2x)}{(x^2)^2}. \] Simplifying gives: \[ g^{\prime}(x) = \frac{12x^5 - 8x^3 - 6x^2 + 8x^2 - 12x^4 + 8}{x^4} = \frac{(12x^5 - 12x^4) + 8 - 6x^2}{x^4}. \] Moving to the next point, for the tangent line to \( f(x) = 3x^{2} + b x + c \) at \( x = 1 \) being \( y = 9x - 9 \), we know the slope (derivative) at that point must equal 9: \[ f'(x) = 6 + b = 9 \implies b = 3. \] Now substituting \( x = 1 \): \[ f(1) = 3(1^2) + 3(1) + c = 6 + c = -9 \implies c = -15. \] Thus, \( b = 3 \) and \( c = -15 \).
