Pregunta
upstudy study bank question image url

Use both the washer method and the shell method to find the volume of the solid that is generated when the region
in the first quadrant bounded by , and is revolved about the line .
Set up the integral that gives the volume of the solid as a single integral if possible using the disk/washer method.
Select the correct choice below and fill in any answer boxes within your choice.
(Type exact answers.)

Ask by Bolton Cook. in the United States
Mar 29,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the volume of the solid generated by revolving the region bounded by , , and about the line , we can use both the washer method and the shell method.
Washer Method:
  • Outer Radius ( ): Distance from the axis to is .
  • Inner Radius ( ): Distance from to is .
  • Volume Integral:
Shell Method:
  • Radius ( ): Distance from the slice at height to the axis is .
  • Height ( ): .
  • Volume Integral:
Both integrals calculate the volume of the solid formed by the revolution.

Solución

We take vertical slices at a fixed in the interval (since meets when ). For each , the region has running from (inner curve) up to (outer boundary). When this slice is revolved about the horizontal line , it produces a washer with
  • Outer radius: the distance from the axis to
  • Inner radius: the distance from to
Thus the volume is given by

We now take horizontal slices at a fixed . In the region the -values go from the lowest point (when on the curve ) up to . For a fixed , runs from (left boundary) to (obtained from ). When this slice (of thickness ) is rotated about the line , it forms a cylindrical shell. Its characteristics are:
  • Radius: the distance from the slice at height to the axis is
  • Height: given by the horizontal distance
Thus the volume using the shell method is

Both integrals represent the volume of the solid formed by revolving the given region about .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the volume of the solid generated when the region bounded by , , and is revolved about the line , we can use the washer method.
First, determine the boundaries of the region. The curves intersect when , which gives (since we’re only in the first quadrant).

Washer Method:

The outer radius from the line to the line is:
The inner radius from the line to the parabola is:
The volume is then given by the integral:
Substituting in the radiuses:

Final Integral Setup:

Thus, the volume of the solid as a single integral using the washer method is:
This can be simplified to:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad