Pregunta
upstudy study bank question image url

\( \frac { d } { d x } ( x ^ { 2 } y ^ { 3 } = 2 x ) \)

Ask by Nguyen Page. in the Philippines
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative is \( \frac{dy}{dx} = \frac{2 - 2xy^3}{3x^2y^2} \).

Solución

We start with the equation:   x²y³ = 2x Differentiate both sides with respect to x. Remember that y is a function of x, so when differentiating terms involving y, you must use the chain rule. 1. Differentiate the left-hand side using the product rule:   d/dx[x²y³] = d/dx[x²] · y³ + x² · d/dx[y³] 2. Compute the derivatives:   - d/dx[x²] = 2x   - d/dx[y³] = 3y² · (dy/dx)   (by the chain rule) So the derivative of the left-hand side is:   2x y³ + 3x²y² (dy/dx) 3. Now differentiate the right-hand side:   d/dx[2x] = 2 So we have the differentiated equation:   2xy³ + 3x²y² (dy/dx) = 2 4. Now solve for dy/dx (denote it as y′):   3x²y² y′ = 2 – 2xy³   y′ = (2 – 2xy³) / (3x²y²) Thus, the derivative is:   dy/dx = (2 – 2xy³) / (3x²y²)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To differentiate the equation \( x^2 y^3 = 2x \) with respect to \( x \), you need to apply implicit differentiation. This means treating \( y \) as a function of \( x \). The derivative will yield \( 2xy^3 + 3x^2y^2 \frac{dy}{dx} = 2 \). Rearranging terms, you can isolate \( \frac{dy}{dx} \) to get \( \frac{dy}{dx} = \frac{2 - 2xy^3}{3x^2y^2} \). There you have it—the slope of \( y \) with respect to \( x \)! Understanding implicit differentiation is crucial for solving equations where \( y \) isn't explicitly defined. Real-world applications are plentiful, especially in fields like physics and economics, where relationships between variables often exist without clear functions. For instance, you might encounter scenarios involving rates of change, like speed and acceleration, which rely on these principles. By mastering implicit differentiation, you'll be equipped to tackle complex equations encountered in scientific and mathematical modeling!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad