Pregunta
1 TIMEREMANING \( 54: 17 \) The times it took for 35 loggerhead sea turtle eggs to hatch in a simple random sample are normally distributed, with a mean of 50 days and a standard deviation of 2 days. Assuming a \( 95 \% \) confidence level ( \( 95 \% \) confidence level \( =z \)-score of 1.96 ), what is the margin of error for the population mean? Remember, the margin of error, ME, can be determined using the formula \( M E=\frac{z \bullet s}{\sqrt{n}} \) 0.06 0.11 0.34 0.66
Ask by Ford Cook. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The margin of error for the population mean is approximately 0.66.
Solución
To find the margin of error for the population mean, we can use the formula:
\[ ME = \frac{z \times s}{\sqrt{n}} \]
Given:
- \( z = 1.96 \) (for a 95% confidence level)
- \( s = 2 \) (standard deviation)
- \( n = 35 \) (sample size)
Substitute the values into the formula:
\[ ME = \frac{1.96 \times 2}{\sqrt{35}} \]
Now, we can calculate the margin of error.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1.96\times 2}{\sqrt{35}}\)
- step1: Multiply the numbers:
\(\frac{3.92}{\sqrt{35}}\)
- step2: Divide the terms:
\(\frac{98}{25\sqrt{35}}\)
- step3: Multiply by the Conjugate:
\(\frac{98\sqrt{35}}{25\sqrt{35}\times \sqrt{35}}\)
- step4: Multiply the numbers:
\(\frac{98\sqrt{35}}{875}\)
- step5: Reduce the fraction:
\(\frac{14\sqrt{35}}{125}\)
The margin of error for the population mean is approximately 0.66.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To find the margin of error (ME) for the population mean, we can use the formula \( M E = \frac{z \cdot s}{\sqrt{n}} \). Here, \( z \) (the z-score at 95% confidence level) is 1.96, \( s \) (the standard deviation) is 2 days, and \( n \) (the sample size) is 35. Calculating the margin of error: \[ M E = \frac{1.96 \cdot 2}{\sqrt{35}} \approx \frac{3.92}{5.916} \approx 0.66 \] So the margin of error for the population mean is approximately 0.66 days.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium