Pregunta
upstudy study bank question image url

Suppose \( x_{1}, x_{2}, x_{2}, \ldots x_{n} \) is a random sample from a normal population with mean \( \mu \) and variance 16 . Find the test with the best critical region, that is, find the most powerful test, with a sample size of \( \mathrm{n}=16 \) and a significance level \( \propto=0.05 \) to test the simple null \( H_{\mathbf{a}}: \theta=10 \) hypothesis against the simple alternative hypothesis \( H_{1}: \theta=15 \), Also find the power of the test.

Ask by Huang Medina. in Nigeria
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Reject \( H_0 \) if the sample mean \( \bar{X} \) is greater than 11.645. The power of the test when \( \mu = 15 \) is approximately 99.96%.

Solución

We are given a sample from N(µ, 16) with n = 16. We wish to test   H₀: µ = 10  versus  H₁: µ = 15 at a significance level of α = 0.05. Step 1. Identify the Test Statistic Since the sample comes from a normal population with a known variance, the sample mean X̄ is normally distributed. Under any given µ, we have   X̄ ~ N(µ, σ²/n)  =  N(µ, 16/16) = N(µ, 1). Step 2. Obtain the Most Powerful Test (Neyman–Pearson Lemma) For testing two simple hypotheses, the Neyman–Pearson lemma tells us that the most powerful test rejects H₀ for large values of the likelihood ratio. Given the problem and the alternatives, the decision will be based on X̄. Intuitively, since H₁ has a larger mean than H₀, we reject H₀ when X̄ is large. Step 3. Determine the Critical Value We want the test to have a size of 0.05. Therefore, under H₀ (µ = 10) we find the value c such that   P(X̄ > c | µ = 10) = 0.05. Since X̄ ~ N(10, 1) under H₀, we standardize:   P(X̄ > c) = P(Z > c−10) = 0.05, where Z ~ N(0, 1). From the standard normal table, the 95th percentile is approximately 1.645. Therefore,   c − 10 = 1.645  ⟹  c = 11.645. Thus, the most powerful test rejects H₀ if X̄ > 11.645. Step 4. Compute the Power of the Test The power of the test is the probability of rejecting H₀ when H₁ is true (i.e., when µ = 15). Under H₁,   X̄ ~ N(15, 1). Then, the power is   Power = P(X̄ > 11.645 | µ = 15). Standardizing under H₁:   P(X̄ > 11.645) = P(Z > 11.645 − 15) = P(Z > −3.355), where Z ~ N(0, 1). Since P(Z > −3.355) = 1 − P(Z ≤ −3.355) and using symmetry P(Z ≤ −3.355) = P(Z ≥ 3.355), we note that P(Z ≥ 3.355) is very small. Alternatively, because the standard normal is symmetric, we have   P(Z > −3.355) = Φ(3.355). Using standard normal tables or a calculator, Φ(3.355) is approximately 0.9996. Thus, the power is roughly 99.96%. Step 5. Final Answer The most powerful test at the 0.05 significance level is:   Reject H₀ if X̄ > 11.645. The power of this test when µ = 15 is approximately 0.9996 (99.96%).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the most powerful test for the hypotheses \( H_0: \mu = 10 \) against \( H_1: \mu = 15 \) when sampling from a normal distribution with known variance \( \sigma^2 = 16 \), we use the Neyman-Pearson lemma. 1. **Critical Region**: Given that \( \sigma^2 = 16 \), we have \( \sigma = 4 \). The test statistic for the sample mean \( \bar{x} \) is calculated as \[ Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{\bar{x} - 10}{4 / \sqrt{16}} = \frac{\bar{x} - 10}{1}. \] Under \( H_0 \), the variable \( Z \) follows a standard normal distribution. The critical value \( z_{\alpha} \) for \( \alpha = 0.05 \) corresponds to a one-tailed test, and we can find it using standard normal tables or software, yielding \( z_{0.05} \approx 1.645 \). To establish the rejection region, we can set: \[ Z > 1.645 \quad \text{or equivalently} \quad \bar{x} > 10 + 1.645 = 11.645. \] Thus, the critical region is \( \bar{x} > 11.645 \). 2. **Power of the Test**: The power of the test is the probability of correctly rejecting the null hypothesis when \( H_1 \) is true. Under \( H_1 \) (i.e., \( \mu = 15 \)), the distribution of the sample mean \( \bar{x} \) is \[ \bar{x} \sim N\left(15, \frac{4}{\sqrt{16}}\right) = N(15, 1). \] We need to find the probability that \( \bar{x} > 11.645 \) when \( \mu = 15 \): \[ P(\bar{x} > 11.645 \mid \mu = 15) = P\left(Z > \frac{11.645 - 15}{1}\right) = P(Z > -3.355). \] Using the properties of standard normal distribution, we can find this probability: \[ P(Z > -3.355) = 1 - P(Z \leq -3.355) \approx 1 - 0.0004 \approx 0.9996. \] Thus, the power of the test is approximately \( 0.9996 \) or \( 99.96\% \). In summary, we have identified the rejection region and calculated the power of the most powerful test.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad