Pregunta
Select all the expressions equivalent to \( 2(x+ \) 1. \( 2 \cdot(x+3) \) 2. \( (x+3) 2 \) 3. \( 2 \cdot x+2 \cdot 3 \) 4. \( 2 \cdot x+3 \) 5. \( (2 \cdot x)+3 \) 6. \( (2+x) 3 \)
Ask by Lynch Hart. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The equivalent expressions are options 1, 2, and 3.
Solución
We begin with the expression 2(x+3). To see which ones are equivalent, we can simplify 2(x+3) by distributing the 2:
2(x+3) = 2·x + 2·3 = 2x + 6
Now check each option:
1. 2 · (x+3): This is the same as the given expression.
2. (x+3) 2: Since multiplication is commutative, this is also 2·(x+3).
3. 2 · x+2 · 3: This simplifies to 2x+6.
4. 2 · x+3: This simplifies to 2x+3, which is not equal to 2x+6.
5. (2 · x)+3: This is also 2x+3, so it does not match.
6. (2+x) 3: This means 3·(2+x) = 3x+6, which is not equal to 2x+6.
Thus, the expressions equivalent to 2(x+3) are options 1, 2, and 3.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find expressions equivalent to \( 2(x + 3) \), we first expand it to \( 2x + 6 \). Now, let's evaluate each option: 1. \( 2 \cdot (x+3) = 2x + 6 \) (equivalent) 2. \( (x+3) \cdot 2 = 2x + 6 \) (equivalent) 3. \( 2 \cdot x + 2 \cdot 3 = 2x + 6 \) (equivalent) 4. \( 2 \cdot x + 3 = 2x + 3 \) (not equivalent) 5. \( (2 \cdot x) + 3 = 2x + 3 \) (not equivalent) 6. \( (2 + x) \cdot 3 = 3x + 6 \) (not equivalent) Thus, the expressions that are equivalent to \( 2(x + 3) \) are: - \( 2 \cdot (x+3) \) - \( (x+3) \cdot 2 \) - \( 2 \cdot x + 2 \cdot 3 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium