Pregunta
upstudy study bank question image url

2. \( -4 \sqrt{216 m^{3} n^{5}} \)

Ask by Coles Carrillo. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified form is \( -24n^{2}m\sqrt{6nm} \).

Solución

Calculate or simplify the expression \( -4\sqrt{216m^{3}n^{5}} \). Simplify the expression by following steps: - step0: Solution: \(-4\sqrt{216m^{3}n^{5}}\) - step1: Simplify the root: \(-4\times 6n^{2}m\sqrt{6nm}\) - step2: Multiply the terms: \(-24n^{2}m\sqrt{6nm}\) The simplified form of \( -4 \sqrt{216 m^{3} n^{5}} \) is \( -24n^{2}m\sqrt{6nm} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To simplify \( -4 \sqrt{216 m^{3} n^{5}} \), we first break it down. The square root of \( 216 \) can be simplified: \( 216 = 36 \times 6 \), and the square root of \( 36 \) is \( 6 \). Thus, \( \sqrt{216} = 6 \sqrt{6} \). For the variables, \( m^{3} \) simplifies to \( m^{1.5} \) or \( m \sqrt{m} \), and \( n^{5} \) simplifies to \( n^{2} \sqrt{n} \). Putting it all together: \[ -4 \sqrt{216 m^{3} n^{5}} = -4 (6 \sqrt{6}) (m \sqrt{m}) (n^{2} \sqrt{n}) = -24 n^{2} m \sqrt{6mn}. \] Thus, the final simplified result is: \[ \boxed{-24 n^{2} m \sqrt{6mn}}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad