Pregunta
upstudy study bank question image url

stion 4 of 7 , Step 1 of 1 Isider all four-digit numbers that can be made from the digits \( 0-8 \) (assume that numbers cannot start with 0 ). What is the probability of choosing a randam nu n this group that is greater than 2000 ? Enter a fraction or round your answer to 4 decimal places, if necessary.

Ask by Tucker Dunn. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability is \( \frac{7}{8} \) or 0.875.

Solución

To find the probability of choosing a random number from the group of four-digit numbers that can be made from the digits \(0-8\) (excluding numbers that start with 0) and is greater than 2000, we need to first determine the total number of such numbers and then find the number of numbers greater than 2000. Let's start by finding the total number of four-digit numbers that can be made from the digits \(0-8\) excluding numbers that start with 0. The first digit can be any of the digits \(1-8\) (since we exclude 0 as the first digit), and the remaining three digits can be any of the digits \(0-8\). Therefore, the total number of four-digit numbers is \(8 \times 9 \times 9 \times 9 = 5832\). Next, we need to find the number of four-digit numbers greater than 2000. To do this, we can consider the numbers from 2000 to 9999. The first digit can be any of the digits \(2-9\), and the remaining three digits can be any of the digits \(0-8\). Therefore, the number of four-digit numbers greater than 2000 is \(7 \times 9 \times 9 \times 9 = 5103\). Now, we can calculate the probability of choosing a random number from the group that is greater than 2000 by dividing the number of numbers greater than 2000 by the total number of four-digit numbers. \[ \text{Probability} = \frac{5103}{5832} \] Let's calculate this probability. Calculate the value by following steps: - step0: Calculate: \(\frac{5103}{5832}\) - step1: Reduce the fraction: \(\frac{7}{8}\) The probability of choosing a random number from the group of four-digit numbers that can be made from the digits \(0-8\) (excluding numbers that start with 0) and is greater than 2000 is \( \frac{7}{8} \) or 0.875.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability of choosing a random four-digit number greater than 2000 made from the digits 0-8, we first need to determine the total number of valid four-digit numbers. 1. **Total Four-Digit Numbers**: The first digit can be any from 1 to 8 (since it cannot be 0), giving us 8 options. The remaining three digits can be from 0 to 8, giving us 9 options each. Therefore, the total number of four-digit numbers is: \[ 8 \times 9 \times 9 \times 9 = 5832 \] 2. **Numbers Greater than 2000**: For a number to be greater than 2000, the first digit must be either 2, 3, 4, 5, 6, 7, or 8. This gives us 7 options for the first digit. The remaining three digits can still be from 0 to 8, giving us 9 options each. Thus, the total numbers greater than 2000 are: \[ 7 \times 9 \times 9 \times 9 = 5103 \] 3. **Probability Calculation**: The probability of choosing a number greater than 2000 is calculated by dividing the number of favorable outcomes by the total outcomes: \[ P(\text{greater than 2000}) = \frac{5103}{5832} \] 4. **Simplifying the Fraction**: To simplify \( \frac{5103}{5832} \), we can divide both the numerator and denominator by their greatest common divisor, which is 3: \[ \frac{5103 \div 3}{5832 \div 3} = \frac{1701}{1944} \] Since 1701 and 1944 have no other common factors, this is in simplest form. Thus, the probability of randomly choosing a four-digit number from this set that is greater than 2000 is \( \frac{1701}{1944} \) or approximately 0.8756 when rounded to four decimal places.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad