Evaluate the expression for \( g=-7 \) \[ 2 g^{2}+11 g+16-7 g=\square \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To evaluate the expression for \( g = -7 \), we can substitute \(-7\) into the expression \( 2g^2 + 11g + 16 - 7g \). Starting with the expression: \[ 2(-7)^2 + 11(-7) + 16 - 7(-7) \] Calculating each term step by step: 1. First, calculate \((-7)^2\): \[ (-7)^2 = 49 \] 2. Now, substitute \((-7)^2\) back into the expression: \[ 2(49) + 11(-7) + 16 - 7(-7) \] This simplifies to: \[ 98 - 77 + 16 + 49 \] 3. Now, calculate \(98 - 77\): \[ 98 - 77 = 21 \] 4. Add \(21 + 16\): \[ 21 + 16 = 37 \] 5. Lastly, add \(37 + 49\): \[ 37 + 49 = 86 \] Therefore, the evaluated expression is: \[ \boxed{86} \]
