Pregunta
upstudy study bank question image url

The scores on a test are normally distributed with a mean of 40 and a standard deviation of 8. What is the score that is \( 2 \frac{1}{2} \) standard deviations above the mean? A score of \( \square \) is \( 2 \frac{1}{2} \) standard deviations above the mean.

Ask by Erickson Ellis. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A score of 60 is \( 2 \frac{1}{2} \) standard deviations above the mean.

Solución

To find the score that is \( 2 \frac{1}{2} \) standard deviations above the mean, we can use the formula: \[ \text{Score} = \text{Mean} + (z \times \text{Standard Deviation}) \] where: - Mean = 40 - Standard Deviation = 8 - \( z = 2.5 \) (since \( 2 \frac{1}{2} \) is equivalent to 2.5) Now, substituting the values into the formula: \[ \text{Score} = 40 + (2.5 \times 8) \] Calculating \( 2.5 \times 8 \): \[ 2.5 \times 8 = 20 \] Now, adding this to the mean: \[ \text{Score} = 40 + 20 = 60 \] Thus, a score of \( 60 \) is \( 2 \frac{1}{2} \) standard deviations above the mean. So, the final answer is: A score of \( 60 \) is \( 2 \frac{1}{2} \) standard deviations above the mean.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find a score that is \( 2 \frac{1}{2} \) standard deviations above the mean, first convert \( 2 \frac{1}{2} \) to an improper fraction, which is \( 2.5 \). Then, calculate the score using the formula: \[ \text{Score} = \text{Mean} + (Z \times \text{Standard Deviation}) \] Substituting in the values gives us: \[ \text{Score} = 40 + (2.5 \times 8) = 40 + 20 = 60 \] So, a score of \( 60 \) is \( 2 \frac{1}{2} \) standard deviations above the mean. Apart from its mathematical properties, this concept is widely applicable in fields like psychology or education where understanding performance distribution helps educators tailor their teaching. Knowing the score necessary to exceed a specific percentile can help set realistic goals for student achievement! Additionally, a common mistake is forgetting to account for whether you are dealing with standard deviations above or below the mean when calculating your new score. Always clarify if you’re looking for above or below the mean before jumping into calculations—precision is key in statistics!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad