QUESTION 25 If possible, factor the polynomial completely. If a polynomial cannot be factored, state that it is prime. \( 9 a^{2}+30 a+25 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To factor the polynomial \( 9a^2 + 30a + 25 \), we can look for two numbers that multiply to \( 9 \times 25 = 225 \) and add up to \( 30 \). Those numbers are \( 15 \) and \( 15 \). Thus, we can rewrite the polynomial as \( 9a^2 + 15a + 15a + 25 \). Now, grouping them gives us: \( (9a^2 + 15a) + (15a + 25) \). Factoring each group results in \( 3a(3a + 5) + 5(3a + 5) \). Now we can factor out the common binomial \( (3a + 5) \): The completely factored form is \( (3a + 5)(3a + 5) \) or \( (3a + 5)^2 \), showing that the polynomial is a perfect square trinomial!
