\( \int _{}^{}\frac{\sec (x)^{3}}{\tan (x)} d x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve the integral \( \int \frac{\sec^3(x)}{\tan(x)} \, dx \), we can use a substitution method. Note that \( \tan(x) \) is the derivative of \( \sec(x) \). Let’s set \( u = \tan(x) \), which means that \( du = \sec^2(x) \, dx \). We can rewrite \( \sec^3(x) \) as \( \sec(x) \cdot \sec^2(x) \). Now substituting, we have: \[ dx = \frac{du}{\sec^2(x)} \] Thus, we can express our integral as: \[ \int \frac{\sec^3(x)}{\tan(x)} dx = \int \sec(x) \cdot \frac{1}{u} \cdot \sec^2(x) \, dx = \int \sec(x) \cdot \frac{1}{u} \cdot \frac{du}{\sec^2(x)} = \int \frac{\sec(x)}{u} du \] Now we can express \( \sec(x) \) in terms of \( u \): Since \( u = \tan(x) = \frac{\sin(x)}{\cos(x)} \), we also have \( \sec(x) = \frac{1}{\cos(x)} = \sqrt{1 + u^2} \). Now substituting back, we get: \[ \int \frac{1}{u} \sqrt{1 + u^2} \, du \] This integral can be tackled with integration techniques or using a table of integrals, but it may require some algebraic manipulation. Would you like to proceed with the integral evaluation, or is there something else you want to explore?
