Pregunta
upstudy study bank question image url

19. [-/2 Points] DETAILS MY NOTES SCALCET9 2.6 .068 . A tank contains \( 9,000 \mathrm{~L} \) of pure water. Brine that contains 35 g of salt per liter of water is pumped into the tank at a rate of \( 25 \mathrm{~L} / \mathrm{min} \). (a) Find the concentration of salt after \( t \) minutes (in \( \mathrm{g} / \mathrm{L} \) ). \[ \mathrm{C}(\mathrm{t})=\square \mathrm{g} / \mathrm{L} \] (b) What happens to the concentration (in \( \mathrm{g} / \mathrm{L} \) ) as \( t \rightarrow \infty \) ? \( \mathrm{g} / \mathrm{L} \)

Ask by Evans Logan. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The concentration of salt after \( t \) minutes is \( C(t) = \frac{35t}{t + 360} \) grams per liter. (b) As time approaches infinity, the concentration of salt approaches 35 grams per liter.

Solución

We start by letting S(t) be the total mass of salt (in grams) in the tank after t minutes. Since the tank initially contains pure water, S(0) = 0. Brine with a salt concentration of 35 g/L is entering at a rate of 25 L/min, so the salt is entering at a rate of   Rate in = 25 L/min × 35 g/L = 875 g/min. Because there is no mention of the mixture leaving the tank, the salt simply accumulates. Thus, the differential equation is   dS/dt = 875. Integrate with respect to time:   S(t) = 875t + C. Using the initial condition S(0) = 0, we find C = 0, so   S(t) = 875t (g). While salt is accumulating, the volume of fluid in the tank is also increasing. Initially, there are 9,000 L of water, and brine is entering at 25 L/min, so the volume at time t is   V(t) = 9,000 + 25t (L). The concentration of salt in the tank after t minutes is then   C(t) = S(t) / V(t) = 875t / (9000 + 25t) (g/L). This is the answer for part (a). We can simplify C(t) by factoring the denominator (notice 25 is a common factor):   9000 + 25t = 25(t + 360), and since 875 = 35 × 25, we can write   C(t) = (35 × 25t) / (25(t + 360)) = (35t) / (t + 360) (g/L). For part (b), we want to find the behavior of C(t) as t → ∞. Consider   lim₍t→∞₎ (35t)/(t + 360). Divide numerator and denominator by t:   lim₍t→∞₎ [35/(1 + 360/t)] = 35/1 = 35 (g/L). Thus, as t becomes very large, the concentration of salt in the tank approaches 35 g/L. Final Answers: (a) C(t) = (35t)/(t + 360) g/L. (b) As t → ∞, the concentration approaches 35 g/L.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When brine containing salt is pumped into a tank of pure water, the concentration of salt will gradually build up over time. Initially, the concentration is \(0\) g/L, as only pure water is present. As saltwater enters the tank at a rate of \(25 \, \text{L/min}\), you can express the concentration of salt \(C(t)\) after \(t\) minutes. The total salt added can be modeled as \(35 \times 25t\) grams of salt, while the increasing volume of water in the tank after \(t\) minutes will be \(9000 + 25t\) liters. Therefore, the concentration \(C(t) = \frac{875t}{9000 + 25t}\, \text{g/L}\). As time progresses, the tank approaches a limit. When considering \(t \rightarrow \infty\), the concentration tends toward a steady state. The system reaches a point where the saltwater inflow stabilizes with the diluted salt concentration, leading to a final unchanging concentration of \(35 \, \text{g/L}\). So, as \(t\) becomes very large, \(C(t)\) approaches \(35 \, \text{g/L}\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad