1.2 Simplify \( 362,67(29,74-12,456)+\sqrt{457,8} \) (correct to THREE decimal places) 1.3 Calculate \( \frac{1}{3} \times 27-\sqrt{64} \) \( 1.4 \quad \begin{array}{l}\text { Joey paid } R 202,50 \text { for petrol. Determine how many litres of petrol he bought if it is } \\ \text { sold at } R 8,10 \text { per litre. }\end{array} \) 1.5 Calculate \( \frac{\sigma-12}{18-3} \) 1.6 Convert 2459,00 Dollar to Rand. Use the exchange rate \( \$ 1=R 7,92 \). Determine the length of ONE side of a square if its area is \( 81 \mathrm{~cm}^{2} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To simplify \( 362,67(29,74-12,456)+\sqrt{457,8} \), you first calculate the expression inside the parentheses: \( 29,74 - 12,456 = 17,284 \). Next, multiply by \( 362,67 \) to get \( 362,67 \times 17,284 \approx 6265,34 \). Then, calculate \( \sqrt{457,8} \approx 21,42 \). Finally, add them together: \( 6265,34 + 21,42 \approx 6286,76 \), so rounded to three decimal places, the result is \( 6286,760 \). For the calculation \( \frac{1}{3} \times 27 - \sqrt{64} \), you first find \( \frac{1}{3} \times 27 = 9 \). Then calculate \( \sqrt{64} = 8 \). So, \( 9 - 8 = 1 \). To find out how many liters of petrol Joey bought, divide his total payment by the price per litre. So, \( \frac{202,50}{8,10} \approx 24,938 \), which means Joey bought approximately 25 liters of petrol when rounded. For \( \frac{\sigma-12}{18-3} \), simplify the denominator first: \( 18 - 3 = 15 \). So the expression simplifies to \( \frac{\sigma - 12}{15} \). To convert 2459,00 Dollar to Rand, multiply by the exchange rate: \( 2459,00 \times 7,92 = 19429,68 \) Rand. Finally, to determine the length of ONE side of a square with an area of \( 81 \mathrm{~cm}^{2} \), use the formula for area \( A = s^2 \). Here, \( s = \sqrt{81} = 9 \mathrm{~cm} \).
