Pregunta
upstudy study bank question image url

Find the absolute maximum and minimum values of the following function on the given region .

Find both partial derivatives of .
and
Determine the absolute maximum value of on . Select the correct choice below and, if necessary, fill in the answer
box to complete your choice.
A. There is no absolute maximum value.
B. The absolute maximum value of on is
(Type an exact answer.)

Ask by Lang Rodriquez. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The absolute maximum value of on is .

Solución

To find the absolute maximum and minimum values of the function on the region , we will follow these steps:
  1. Find the critical points of in the interior of the region by setting the partial derivatives equal to zero.
  2. Evaluate on the boundary of the region .
  3. Compare the values from the critical points and the boundary to determine the absolute maximum and minimum.

Step 1: Find Critical Points

The partial derivatives are given as:
Setting gives:
Setting gives:
Thus, the critical point is .

Step 2: Evaluate on the Boundary

The boundary of the region is defined by and . We can parameterize the boundary using polar coordinates:
Substituting into :
Now we need to find the maximum and minimum values of for .

Step 3: Analyze the Function on the Boundary

The function ranges from to as goes from to :
  • At :
  • At :
The maximum occurs at and the minimum occurs at .

Step 4: Compare Values

Now we compare the values at the critical point and the boundary:
  • At the critical point :
  • At the boundary:

Conclusion

The absolute maximum value of on is .
Thus, the answer is:
B. The absolute maximum value of on is .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the absolute maximum value of the function on the given region , we will first evaluate the function at critical points and along the boundaries of the region.
Critical Points: We will set the partial derivatives and to zero. From , setting it to zero gives us or . From , setting it to zero gives . Thus, we have the critical point .
Evaluating :
Boundary: On the boundary defined by (the upper semicircle with radius 2), we can parameterize using and for . Substitute these into :
To find max values, consider the function . This function achieves its maximum when is minimum (i.e., at ):
At where :
At where :
Having evaluated all relevant points:
  • At
  • At
  • At
  • At
The absolute maximum value of on is:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad