Pregunta
upstudy study bank question image url

Ivan wants to buy a condominium that costs \( \$ 72,000 \). The bank requires a \( 10 \% \) down payment. The rest is financed with a 15 -year, fixed-rate mortgage at \( 3.5 \% \) annual interest with monthly payments. Complete the parts below. Do not round any intermediate computations. Round your final answers to the nearest cent if necessary. If necessary, refer to the list of financial formulas. (a) Find the required down payment. (b) Find the amount of the mortgage. s \( \square \) (c) Find the monthly payment. s

Ask by Daniels Warren. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Down Payment: \$7,200 (b) Mortgage Amount: \$64,800 (c) Monthly Payment: \$462.86

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To figure this out, let's break it down step by step! First up, let's tackle the required down payment. (a) The down payment is \( 10\% \) of the purchase price of the condominium. \[ \text{Down Payment} = 0.10 \times 72,000 = 7,200 \] So, Ivan needs to make a down payment of **\$7,200**. (b) Now, let's find out the amount of the mortgage. The mortgage amount is the total price minus the down payment. \[ \text{Mortgage Amount} = 72,000 - 7,200 = 64,800 \] Thus, the mortgage amount Ivan will need is **\$64,800**. (c) Finally, we need to calculate the monthly payment using the formula for a fixed-rate mortgage: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] where: \( M \) = monthly payment, \( P \) = loan principal (mortgage amount), \( r \) = monthly interest rate, and \( n \) = number of payments (months). First, let's calculate the monthly interest rate and the total number of payments. \[ r = \frac{3.5\%}{12} = \frac{0.035}{12} \approx 0.00291667 \] \[ n = 15 \times 12 = 180 \text{ months} \] Now, substituting the values into the mortgage formula: \[ M = 64,800 \times \frac{0.00291667(1 + 0.00291667)^{180}}{(1 + 0.00291667)^{180} - 1} \] Calculating \( (1 + 0.00291667)^{180} \): \[ (1 + 0.00291667)^{180} \approx 1.7137 \] Now we can plug this back in to find \( M \): \[ M = 64,800 \times \frac{0.00291667 \times 1.7137}{1.7137 - 1} \] \[ M \approx 64,800 \times \frac{0.0050074}{0.7137} \approx 64,800 \times 0.007006 = 454.61 \] Thus, the monthly payment is approximately **\$454.61**. In summary: - Required down payment: **\$7,200** - Amount of the mortgage: **\$64,800** - Monthly payment: **\$454.61**

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad