A spherical balloon is inflated and its volume increases at a rate of \( 23 \mathrm{in}^{3} / \mathrm{min} \). What is the rate of change of its radius when the radius is 9 in.? The balloon's radius is increasing at a rate of (Round to three decimal places as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the rate of change of the radius when the radius is 9 inches, we start with the formula for the volume of a sphere: \[ V = \frac{4}{3} \pi r^3. \] We know that the volume \( V \) is changing over time, so we can differentiate both sides with respect to time \( t \): \[ \frac{dV}{dt} = 4 \pi r^2 \frac{dr}{dt}. \] Given that \( \frac{dV}{dt} = 23 \, \text{in}^3/\text{min} \) and \( r = 9 \, \text{in} \), we can plug in these values: \[ 23 = 4 \pi (9^2) \frac{dr}{dt}. \] Calculating \( 9^2 \): \[ 9^2 = 81, \] so our equation becomes: \[ 23 = 4 \pi (81) \frac{dr}{dt}. \] Now, simplify \( 4 \pi (81) \): \[ 4 \pi (81) = 324 \pi. \] Now we have: \[ 23 = 324 \pi \frac{dr}{dt}. \] To solve for \( \frac{dr}{dt} \), divide both sides by \( 324 \pi \): \[ \frac{dr}{dt} = \frac{23}{324 \pi}. \] Now calculating \( \pi \): \[ \frac{dr}{dt} \approx \frac{23}{324 \times 3.14159} \approx \frac{23}{1017.876} \approx 0.0226 \, \text{in/min}. \] Thus, rounding to three decimal places, the balloon's radius is increasing at a rate of approximately: \[ \frac{dr}{dt} \approx 0.023 \, \text{in/min}. \]
