2.1 If \( 12 \tan B-5=0 \) and \( 90^{\circ} \leq B \leq 360^{\circ} \), determine the value of \( \sin B+\cos B \) with the aid of a diagram.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve the equation \( 12 \tan B - 5 = 0 \), we first isolate the tangent: \[ 12 \tan B = 5 \implies \tan B = \frac{5}{12}. \] Next, we can find the angle \( B \) in the range \( 90^\circ \leq B \leq 360^\circ \). The tangent function is positive in the third quadrant (180° to 270°) and in the first quadrant (0° to 90°), but since we are looking within the specified range, we specifically focus on the third quadrant. Using the inverse tangent function, we can calculate: \[ B = \tan^{-1}\left(\frac{5}{12}\right) \approx 22.62^\circ. \] To find the corresponding angle in the third quadrant, we add \( 180^\circ \): \[ B \approx 22.62^\circ + 180^\circ \approx 202.62^\circ. \] Now that we have \( B \), we calculate \( \sin B \) and \( \cos B \). In the third quadrant, both sine and cosine values are negative. Using the definitions of sine and cosine in terms of a right triangle, we consider a triangle where opposite side = 5 and adjacent side = 12: \[ \text{Hypotenuse} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13. \] Now we can determine the sine and cosine values: \[ \sin B = -\frac{5}{13}, \quad \cos B = -\frac{12}{13}. \] Thus, we calculate \( \sin B + \cos B \): \[ \sin B + \cos B = -\frac{5}{13} - \frac{12}{13} = -\frac{17}{13}. \] So, the final answer is: \[ \sin B + \cos B = -\frac{17}{13}. \]
