Pregunta
upstudy study bank question image url

2.1 If \( 12 \tan B-5=0 \) and \( 90^{\circ} \leq B \leq 360^{\circ} \), determine the value of \( \sin B+\cos B \) with the aid of a diagram.

Ask by Whittaker Lowe. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

sin B + cos B = –17/13

Solución

We start with the given equation:   12 tan B – 5 = 0  ⟹  tan B = 5/12. Since tan B is positive and B is restricted to 90° ≤ B ≤ 360°, we must decide in which quadrant B lies. Recall that the tangent function is positive in the 1st and 3rd quadrants. However, the 1st quadrant (0° to 90°) is excluded by the lower bound (B must be at least 90°), so B must lie in the 3rd quadrant. In the 3rd quadrant, both sine and cosine are negative. Step 1. Draw a right triangle for the reference angle α, where   tan α = 5/12. Using the Pythagorean theorem, the hypotenuse is:   r = √(5² + 12²) = √(25 + 144) = √169 = 13. So, in the reference triangle:   Opposite side = 5,   Adjacent side = 12,   Hypotenuse = 13. Step 2. Determine sine and cosine of the reference angle:   sin α = 5/13, cos α = 12/13. Since B is in the 3rd quadrant, the actual values for B are:   sin B = –sin α = –5/13,   cos B = –cos α = –12/13. Step 3. Calculate sin B + cos B:   sin B + cos B = (–5/13) + (–12/13) = –(5 + 12)/13 = –17/13. Thus, the required value of sin B + cos B is –17/13. Diagram (Sketch Guidelines):  1. Draw the coordinate axes.  2. Mark a point in the 3rd quadrant corresponding to the terminal side of angle B = 180° + α (with α = arctan(5/12)).  3. Construct a right triangle by dropping a perpendicular from that point to the x-axis.  4. Label the sides using the reference triangle:   • The side opposite the angle (inside the triangle) with length 5,   • The side adjacent with length 12,   • Hypotenuse with length 13.  5. Note that since the triangle is in the 3rd quadrant, both the horizontal (x) and vertical (y) sides are negative. This completes the solution and supports our result. Final Answer: sin B + cos B = –17/13.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( 12 \tan B - 5 = 0 \), we first isolate the tangent: \[ 12 \tan B = 5 \implies \tan B = \frac{5}{12}. \] Next, we can find the angle \( B \) in the range \( 90^\circ \leq B \leq 360^\circ \). The tangent function is positive in the third quadrant (180° to 270°) and in the first quadrant (0° to 90°), but since we are looking within the specified range, we specifically focus on the third quadrant. Using the inverse tangent function, we can calculate: \[ B = \tan^{-1}\left(\frac{5}{12}\right) \approx 22.62^\circ. \] To find the corresponding angle in the third quadrant, we add \( 180^\circ \): \[ B \approx 22.62^\circ + 180^\circ \approx 202.62^\circ. \] Now that we have \( B \), we calculate \( \sin B \) and \( \cos B \). In the third quadrant, both sine and cosine values are negative. Using the definitions of sine and cosine in terms of a right triangle, we consider a triangle where opposite side = 5 and adjacent side = 12: \[ \text{Hypotenuse} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13. \] Now we can determine the sine and cosine values: \[ \sin B = -\frac{5}{13}, \quad \cos B = -\frac{12}{13}. \] Thus, we calculate \( \sin B + \cos B \): \[ \sin B + \cos B = -\frac{5}{13} - \frac{12}{13} = -\frac{17}{13}. \] So, the final answer is: \[ \sin B + \cos B = -\frac{17}{13}. \]

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad