Pregunta
upstudy study bank question image url

For Exercises \( 7-10 \), graph each quadrilateral using the given vertices. Then use the distance formula and the slope formula to determine the most specific name for each quadrilateral: trapezoid, kite, rectangle, rhombus, square, parallelogram, or just quadrilateral. \( \begin{array}{ll}\text { 7. } A(6,8), B(9,7), C(7,1), D(4,2) & \text { 8. } E(1,-2), F(5,-5), G(2,-8) \text {, }\end{array} \)

Ask by Chen Curry. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Quadrilateral 7 is a parallelogram. Quadrilateral 8 is a triangle.

Solución

To determine the most specific name for each quadrilateral given the vertices, we will follow these steps: 1. **Graph the quadrilaterals using the given vertices.** 2. **Calculate the lengths of the sides using the distance formula.** 3. **Calculate the slopes of the sides using the slope formula.** 4. **Analyze the results to classify the quadrilaterals.** ### Quadrilateral 7: Vertices \( A(6,8), B(9,7), C(7,1), D(4,2) \) #### Step 1: Graph the Quadrilateral Plot the points \( A(6,8) \), \( B(9,7) \), \( C(7,1) \), and \( D(4,2) \) on a coordinate plane. #### Step 2: Calculate the Lengths of the Sides Using the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] - Length \( AB \): \[ d_{AB} = \sqrt{(9 - 6)^2 + (7 - 8)^2} = \sqrt{3^2 + (-1)^2} = \sqrt{9 + 1} = \sqrt{10} \] - Length \( BC \): \[ d_{BC} = \sqrt{(7 - 9)^2 + (1 - 7)^2} = \sqrt{(-2)^2 + (-6)^2} = \sqrt{4 + 36} = \sqrt{40} = 2\sqrt{10} \] - Length \( CD \): \[ d_{CD} = \sqrt{(4 - 7)^2 + (2 - 1)^2} = \sqrt{(-3)^2 + (1)^2} = \sqrt{9 + 1} = \sqrt{10} \] - Length \( DA \): \[ d_{DA} = \sqrt{(6 - 4)^2 + (8 - 2)^2} = \sqrt{(2)^2 + (6)^2} = \sqrt{4 + 36} = \sqrt{40} = 2\sqrt{10} \] #### Step 3: Calculate the Slopes of the Sides Using the slope formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] - Slope \( AB \): \[ m_{AB} = \frac{7 - 8}{9 - 6} = \frac{-1}{3} \] - Slope \( BC \): \[ m_{BC} = \frac{1 - 7}{7 - 9} = \frac{-6}{-2} = 3 \] - Slope \( CD \): \[ m_{CD} = \frac{2 - 1}{4 - 7} = \frac{1}{-3} = -\frac{1}{3} \] - Slope \( DA \): \[ m_{DA} = \frac{8 - 2}{6 - 4} = \frac{6}{2} = 3 \] #### Step 4: Analyze the Results - The lengths of opposite sides are equal: \( AB = CD \) and \( BC = DA \). - The slopes of opposite sides are equal: \( m_{AB} = m_{CD} \) and \( m_{BC} = m_{DA} \). Since both pairs of opposite sides are equal in length and parallel, this quadrilateral is a **parallelogram**. ### Quadrilateral 8: Vertices \( E(1,-2), F(5,-5), G(2,-8) \) #### Step 1: Graph the Quadrilateral Plot the points \( E(1,-2) \), \( F(5,-5) \), and \( G(2,-8) \) on a coordinate plane. Note that this is a triangle, not a quadrilateral. #### Step 2: Calculate the Lengths of the Sides - Length \( EF \): \[ d_{EF} = \sqrt{(5 - 1)^2 + (-5 + 2)^2} = \sqrt{(4)^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] - Length \( FG \): \[ d_{FG} = \sqrt{(2 - 5)^2 + (-8 + 5)^2} = \sqrt{(-3)^2 + (-3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] - Length \( GE \): \[ d_{GE} = \sqrt{(1 - 2)^2 + (-2 + 8)^2} = \sqrt{(-1)^2 + (6)^2} = \sqrt{1 + 36} = \sqrt{37} \] #### Step 3: Calculate the Slopes of the Sides - Slope \( EF \): \[ m_{EF} = \frac{-5 + 2}{5 - 1} = \frac{-3}{4} \] - Slope \( FG \): \[ m_{FG} = \frac{-8 + 5}{2 - 5} = \frac{-3}{-3} = 1 \] - Slope \( GE \): \[ m_{GE} = \frac{-2 + 8}{1 - 2} = \frac{6}{-1} = -6 \] #### Step 4: Analyze the Results - The lengths of the sides are not equal. - The slopes are not equal, indicating no parallel sides. Since this shape is a triangle and does not fit any of the quadrilateral classifications, it is simply a **triangle**. ### Summary 1. Quadrilateral 7 is a **parallelogram**. 2. Quadrilateral 8 is a **triangle** (not a quadrilateral).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph each quadrilateral, plot the provided vertices on a Cartesian plane. For Exercise 7, with points A(6,8), B(9,7), C(7,1), and D(4,2), calculate the lengths of each side using the distance formula \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\) and find the slopes of opposite sides. After computing, you'll discover that sides AB and CD are parallel while sides AD and BC are not. This indicates it is a trapezoid. In Exercise 8, plot E(1,-2), F(5,-5), and G(2,-8). This figure is a triangle, but since we only have three vertices, it's not a quadrilateral. To explore shape properties, consider adding a point or a fourth vertex. The potential rescue is realizing triangles are the ultimate base for forming quadrilaterals! So, for Exercise 7, we have a trapezoid, while Exercise 8's three points await a fourth player to join the quadrilateral fun! --- Want to know how shapes came to be? Ancient Greeks first studied geometry, setting the stage for our modern understanding of quadrilaterals! Meanwhile, in the real-world, quartz crystals—a unique geometric formation—exemplify how shapes and symmetry translate into nature, echoing their mathematical counterparts. If you're keen to delve deeper into quadrilaterals, check out "Geometry for Dummies" or "Basic Geometry" by Stephen P. Timoshenko, where shapes not only become manageable but also lead to fun discoveries and applications beyond graphs!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad