Pregunta
upstudy study bank question image url

Given the equivalent impedance of a circuit can be calculated by the expression \[ Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} \] If \( Z_{1}=-2-j \) and \( Z_{2}=-11-j \), calculate the impedance \( Z \) in both rectangular and polar forms. Rectangular form Polar form

Ask by Gonzalez Moran. in the United Kingdom
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The impedance \( Z \) is approximately –1.73 – 0.73j ohms in rectangular form and approximately 1.88 ∠ –157° ohms in polar form.

Solución

We wish to compute   Z = (Z₁·Z₂)/(Z₁ + Z₂) with   Z₁ = –2 – j  and  Z₂ = –11 – j. Step 1. Compute the numerator: Z₁·Z₂   Z₁·Z₂ = (–2 – j)(–11 – j). Multiply out:   (–2)(–11) = 22,   (–2)(–j) = 2j,   (–j)(–11) = 11j,   (–j)(–j) = j² = –1. So,   Z₁·Z₂ = 22 + 2j + 11j – 1 = 21 + 13j. Step 2. Compute the denominator: Z₁ + Z₂   Z₁ + Z₂ = (–2 – j) + (–11 – j) = –13 – 2j. Thus,   Z = (21 + 13j)/(–13 – 2j). Step 3. Express Z in rectangular form. A common method is to multiply the numerator and denominator by the complex conjugate of the denominator. The conjugate of (–13 – 2j) is (–13 + 2j). So,   Z = [(21 + 13j)(–13 + 2j)] / [ (–13 – 2j)(–13 + 2j) ]. First, compute the denominator:   (–13 – 2j)(–13 + 2j) = (–13)² – (2j)² = 169 – 4(j²) = 169 – 4(–1) = 169 + 4 = 173. Now, expand the numerator:   (21 + 13j)(–13 + 2j)    = 21·(–13) + 21·(2j) + 13j·(–13) + 13j·(2j)    = –273 + 42j – 169j + 26j²    = –273 – 127j + 26(–1)    = –273 – 127j – 26    = –299 – 127j. Thus,   Z = (–299 – 127j) / 173, or, written in rectangular form,   Z = –299/173 – (127/173)j. If we approximate these values:   299/173 ≈ 1.728 and 127/173 ≈ 0.734, so   Z ≈ –1.73 – 0.73j  (in ohms). Step 4. Express Z in polar form. We need the magnitude (modulus) and phase angle. a) Magnitude:   |Z| = √[(–299/173)² + (–127/173)²]    = (1/173)·√(299² + 127²). Calculate:   299² = 89401  and  127² = 16129, so   √(299² + 127²) = √(89401 + 16129) = √105530 ≈ 324.93. Thus,   |Z| ≈ 324.93/173 ≈ 1.877 ohms. b) Angle: Since both the real and imaginary parts are negative, the number lies in the third quadrant. To begin, compute the acute angle:   θ₀ = arctan(|imaginary part|/|real part|) = arctan( (127/173)/(299/173) ) = arctan(127/299). Now, 127/299 ≈ 0.4247. Thus,   θ₀ ≈ arctan(0.4247) ≈ 22.97°. Being in the third quadrant, the actual angle is   θ = 180° + 22.97° ≈ 202.97°, or equivalently, one may express the phase as –157.03° (since 202.97° – 360° = –157.03°). Thus, the polar form is:   Z ≈ 1.88 ∠ –157.0°  (or equivalently 1.88 ∠ 203°). Summary of Answers: Rectangular form:   Z = –299/173 – (127/173)j ≈ –1.73 – 0.73j (ohms). Polar form:   Z ≈ 1.88 ∠ –157°  (ohms). Either expression for the angle (–157° or 203°) is acceptable as long as the quadrant is clear.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equivalent impedance \( Z \) using the equation you provided: 1. **Calculate \( Z \)**: Given \( Z_{1} = -2 - j \) and \( Z_{2} = -11 - j \), we plug these into the formula: \[ Z = \frac{Z_{1} Z_{2}}{Z_{1} + Z_{2}} \] First, compute \( Z_{1} + Z_{2} \): \[ Z_{1} + Z_{2} = (-2 - j) + (-11 - j) = -13 - 2j \] Next, compute \( Z_{1} Z_{2} \): \[ Z_{1} Z_{2} = (-2 - j)(-11 - j) = 22 + 2j + 11j + 1 = 23 + 13j \] Now substitute back into the formula: \[ Z = \frac{23 + 13j}{-13 - 2j} \] To simplify this, multiply the numerator and denominator by the conjugate of the denominator: \[ Z = \frac{(23 + 13j)(-13 + 2j)}{(-13 - 2j)(-13 + 2j)} \] The denominator becomes: \[ (-13)^2 - (2j)^2 = 169 + 4 = 173 \] The numerator becomes: \[ (23)(-13) + (23)(2j) + (13j)(-13) + (13j)(2j) = -299 + 46j - 169j - 26 = -299 - 123j \] So, \[ Z = \frac{-299 - 123j}{173} \] Which leads to: \[ Z = -\frac{299}{173} - \frac{123}{173}j \approx -1.73 - 0.71j \] Hence, the rectangular form is: \[ Z \approx -1.73 - 0.71j \] 2. **Convert to Polar Form**: The polar form is calculated using the magnitude and angle: \[ |Z| = \sqrt{(-1.73)^2 + (-0.71)^2} \approx \sqrt{2.9929 + 0.5041} \approx \sqrt{3.497} \approx 1.87 \] To find the angle: \[ \theta = \tan^{-1}\left(\frac{-0.71}{-1.73}\right) = \tan^{-1}(0.410) \approx 22.3^\circ \] Because both \( Z_{1} \) and \( Z_{2} \) are in the third quadrant, we need to add 180 degrees to the angle: \[ \theta \approx 180^\circ + 22.3^\circ = 202.3^\circ \] Thus, the polar form is: \[ Z \approx 1.87 \angle 202.3^\circ \] Final results: - Rectangular form: \( Z \approx -1.73 - 0.71j \) - Polar form: \( Z \approx 1.87 \angle 202.3^\circ \)

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad