Given the equivalent impedance of a circuit can be calculated by the expression \[ Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} \] If \( Z_{1}=-2-j \) and \( Z_{2}=-11-j \), calculate the impedance \( Z \) in both rectangular and polar forms. Rectangular form Polar form
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the equivalent impedance \( Z \) using the equation you provided: 1. **Calculate \( Z \)**: Given \( Z_{1} = -2 - j \) and \( Z_{2} = -11 - j \), we plug these into the formula: \[ Z = \frac{Z_{1} Z_{2}}{Z_{1} + Z_{2}} \] First, compute \( Z_{1} + Z_{2} \): \[ Z_{1} + Z_{2} = (-2 - j) + (-11 - j) = -13 - 2j \] Next, compute \( Z_{1} Z_{2} \): \[ Z_{1} Z_{2} = (-2 - j)(-11 - j) = 22 + 2j + 11j + 1 = 23 + 13j \] Now substitute back into the formula: \[ Z = \frac{23 + 13j}{-13 - 2j} \] To simplify this, multiply the numerator and denominator by the conjugate of the denominator: \[ Z = \frac{(23 + 13j)(-13 + 2j)}{(-13 - 2j)(-13 + 2j)} \] The denominator becomes: \[ (-13)^2 - (2j)^2 = 169 + 4 = 173 \] The numerator becomes: \[ (23)(-13) + (23)(2j) + (13j)(-13) + (13j)(2j) = -299 + 46j - 169j - 26 = -299 - 123j \] So, \[ Z = \frac{-299 - 123j}{173} \] Which leads to: \[ Z = -\frac{299}{173} - \frac{123}{173}j \approx -1.73 - 0.71j \] Hence, the rectangular form is: \[ Z \approx -1.73 - 0.71j \] 2. **Convert to Polar Form**: The polar form is calculated using the magnitude and angle: \[ |Z| = \sqrt{(-1.73)^2 + (-0.71)^2} \approx \sqrt{2.9929 + 0.5041} \approx \sqrt{3.497} \approx 1.87 \] To find the angle: \[ \theta = \tan^{-1}\left(\frac{-0.71}{-1.73}\right) = \tan^{-1}(0.410) \approx 22.3^\circ \] Because both \( Z_{1} \) and \( Z_{2} \) are in the third quadrant, we need to add 180 degrees to the angle: \[ \theta \approx 180^\circ + 22.3^\circ = 202.3^\circ \] Thus, the polar form is: \[ Z \approx 1.87 \angle 202.3^\circ \] Final results: - Rectangular form: \( Z \approx -1.73 - 0.71j \) - Polar form: \( Z \approx 1.87 \angle 202.3^\circ \)
