Pregunta
upstudy study bank question image url

Question 1, 5.4.3 HW Score: 085, 0 of 7 points Pert2oti2 Points: 0 of 1 Save A population has a mean \( \mu=72 \) and a standard deviation \( \sigma=29 \). Find the mean and standard deviation of a sampling distribution of sample means with sample size \( n=231 \). \( F_{5}=72 \) (Simplify your answer) \( \sigma_{x}=\square \) (Type an integer or decimal rounded to three decimal places as needed.)

Ask by Ortega Newton. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The mean of the sampling distribution of sample means is 72, and the standard deviation is approximately 1.908.

Solución

To find the mean and standard deviation of a sampling distribution of sample means, we can use the following formulas: 1. Mean of the sampling distribution of sample means: \( \mu_{\bar{x}} = \mu \) 2. Standard deviation of the sampling distribution of sample means: \( \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \) Given: - Population mean: \( \mu = 72 \) - Population standard deviation: \( \sigma = 29 \) - Sample size: \( n = 231 \) 1. Mean of the sampling distribution of sample means: \( \mu_{\bar{x}} = \mu = 72 \) 2. Standard deviation of the sampling distribution of sample means: \( \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{29}{\sqrt{231}} \) Now, we can calculate the standard deviation of the sampling distribution of sample means. Calculate the value by following steps: - step0: Calculate: \(\frac{29}{\sqrt{231}}\) - step1: Multiply by the Conjugate: \(\frac{29\sqrt{231}}{\sqrt{231}\times \sqrt{231}}\) - step2: Multiply the numbers: \(\frac{29\sqrt{231}}{231}\) The standard deviation of the sampling distribution of sample means is approximately 1.90806.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the mean of the sampling distribution of sample means, it's simply equal to the population mean. So, \( F_{5} = 72 \). Now for the standard deviation of the sampling distribution (also known as the standard error), you can use the formula: \[ \sigma_{x} = \frac{\sigma}{\sqrt{n}} \] Plugging in the values we have: \[ \sigma_{x} = \frac{29}{\sqrt{231}} \approx \frac{29}{15.198} \approx 1.912 \] Rounding to three decimal places gives: \(\sigma_{x} \approx 1.912\).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad