Pregunta

Define the reciprocal identity for sine and cosine. How can these identities be represented mathematically?

Ask by Montgomery Harmon. in South Africa
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The reciprocal identities for sine and cosine are: - **Cosecant (csc)** is the reciprocal of **sine (sin)**: \[ \csc(\theta) = \frac{1}{\sin(\theta)} \] - **Secant (sec)** is the reciprocal of **cosine (cos)**: \[ \sec(\theta) = \frac{1}{\cos(\theta)} \] These identities help in simplifying trigonometric expressions and solving equations by expressing one trigonometric function in terms of another.

Solución

Reciprocal identities are fundamental relationships in trigonometry that express one trigonometric function as the reciprocal of another. Specifically for sine and cosine, the reciprocal identities involve the functions **cosecant** and **secant**, respectively. These identities are essential for simplifying trigonometric expressions and solving equations. ### Reciprocal Identities for Sine and Cosine 1. **Cosecant as the Reciprocal of Sine** The cosecant function is the reciprocal of the sine function. Mathematically, this relationship is expressed as: \[ \csc(\theta) = \frac{1}{\sin(\theta)} \] - **Domain Consideration:** Since division by zero is undefined, \(\csc(\theta)\) is undefined wherever \(\sin(\theta) = 0\). This occurs at integer multiples of \(\pi\) (i.e., \(\theta = n\pi\), where \(n\) is an integer). 2. **Secant as the Reciprocal of Cosine** The secant function is the reciprocal of the cosine function. This relationship is mathematically represented as: \[ \sec(\theta) = \frac{1}{\cos(\theta)} \] - **Domain Consideration:** Similarly, \(\sec(\theta)\) is undefined wherever \(\cos(\theta) = 0\). This happens at odd multiples of \(\frac{\pi}{2}\) (i.e., \(\theta = \frac{(2n + 1)\pi}{2}\), where \(n\) is an integer). ### Summary of Reciprocal Identities | Function | Reciprocal Identity | |----------|----------------------------| | \(\sin(\theta)\) | \(\csc(\theta) = \dfrac{1}{\sin(\theta)}\) | | \(\cos(\theta)\) | \(\sec(\theta) = \dfrac{1}{\cos(\theta)}\) | ### Example Usage Suppose you know that \(\sin(\theta) = \frac{3}{5}\), and you want to find \(\csc(\theta)\): \[ \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \] Similarly, if \(\cos(\theta) = \frac{4}{7}\), then: \[ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{\frac{4}{7}} = \frac{7}{4} \] These reciprocal identities are particularly useful in various applications, including solving trigonometric equations, integration in calculus, and modeling periodic phenomena in physics and engineering.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The reciprocal identity for sine states that the sine of an angle is equal to the reciprocal of its cosecant, or mathematically, sin(θ) = 1/csc(θ). Similarly, the reciprocal identity for cosine says that the cosine of an angle is equal to the reciprocal of its secant, represented as cos(θ) = 1/sec(θ). These identities highlight the relationship between these trigonometric functions and their reciprocals, forming a fundamental part of trigonometry. These identities can be incredibly useful in simplifying expressions or solving equations in trigonometry. For instance, if you encounter a problem involving the cosecant of an angle but only know the sine, you can easily switch between them using the reciprocal identity. It allows for flexibility in problem-solving, turning complicated functions into simpler forms!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad