Evaluate the following integral using the Fundamental Theorem of Calculus. Sketch the graph of the intogrand and shade the region whose net area you have found. \( \int_{-2}^{3}\left(x^{2}-x-6\right) d x=\square \) (Simplify your answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To evaluate the integral \( \int_{-2}^{3}\left(x^{2}-x-6\right) d x \) using the Fundamental Theorem of Calculus, we first need to find the antiderivative of the integrand \( f(x) = x^{2} - x - 6 \). The antiderivative is: \[ F(x) = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 6x \] Next, we calculate \( F \) at the bounds of integration: \[ F(3) = \frac{3^{3}}{3} - \frac{3^{2}}{2} - 6(3) = 9 - 4.5 - 18 = -13.5 \] \[ F(-2) = \frac{(-2)^{3}}{3} - \frac{(-2)^{2}}{2} - 6(-2) = -\frac{8}{3} - 2 + 12 = -\frac{8}{3} - \frac{6}{3} + \frac{36}{3} = \frac{22}{3} \] Now apply the Fundamental Theorem: \[ \int_{-2}^{3} (x^{2} - x - 6) \, dx = F(3) - F(-2) = -13.5 - \frac{22}{3} = -13.5 - 7.33 = -20.83 \] Thus, the definite integral evaluates to: \[ \int_{-2}^{3}(x^{2} - x - 6) \, dx = -20.83 \] **Final Answer:** The value of the integral is \(\mathbf{-20.83}\). To sketch the graph, plot the quadratic function \(y = x^2 - x - 6\) which crosses the x-axis at \(x = -2\) and \(x = 3\). Shade the region between the x-axis and the curve from \(x = -2\) to \(x = 3\) to illustrate the net area, which is negative since the curve lies below the x-axis in that interval.
preguntas relacionadas
