Pregunta
upstudy study bank question image url

Evaluate the following integral using the Fundamental Theorem of Calculus. Sketch the graph of the intogrand and shade the region whose net area you have found. \( \int_{-2}^{3}\left(x^{2}-x-6\right) d x=\square \) (Simplify your answer.)

Ask by Crawford Knight. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral \( \int_{-2}^{3}(x^{2}-x-6)dx \) equals \( -\frac{125}{6} \) or approximately \( -20.8\dot{3} \).

Solución

Calculate the integral \( \int_{-2}^{3}(x^{2}-x-6)dx \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{-2}^{3} \left(x^{2}-x-6\right) dx\) - step1: Evaluate the integral: \(\int \left(x^{2}-x-6\right) dx\) - step2: Use properties of integrals: \(\int x^{2} dx+\int -x dx+\int -6 dx\) - step3: Evaluate the integral: \(\frac{x^{3}}{3}+\int -x dx+\int -6 dx\) - step4: Evaluate the integral: \(\frac{x^{3}}{3}-\frac{x^{2}}{2}+\int -6 dx\) - step5: Evaluate the integral: \(\frac{x^{3}}{3}-\frac{x^{2}}{2}-6x\) - step6: Return the limits: \(\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}-6x\right)\bigg |_{-2}^{3}\) - step7: Calculate the value: \(-\frac{125}{6}\) The integral \( \int_{-2}^{3}(x^{2}-x-6)dx \) evaluates to \( -\frac{125}{6} \) or \( -20\frac{5}{6} \) or \( -20.8\dot{3} \). To sketch the graph of the integrand and shade the region whose net area you have found, you would plot the function \( f(x) = x^{2} - x - 6 \) over the interval \( [-2, 3] \) and shade the region below the curve. The net area under the curve from \( -2 \) to \( 3 \) is the value of the integral, which is \( -\frac{125}{6} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To evaluate the integral \( \int_{-2}^{3}\left(x^{2}-x-6\right) d x \) using the Fundamental Theorem of Calculus, we first need to find the antiderivative of the integrand \( f(x) = x^{2} - x - 6 \). The antiderivative is: \[ F(x) = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 6x \] Next, we calculate \( F \) at the bounds of integration: \[ F(3) = \frac{3^{3}}{3} - \frac{3^{2}}{2} - 6(3) = 9 - 4.5 - 18 = -13.5 \] \[ F(-2) = \frac{(-2)^{3}}{3} - \frac{(-2)^{2}}{2} - 6(-2) = -\frac{8}{3} - 2 + 12 = -\frac{8}{3} - \frac{6}{3} + \frac{36}{3} = \frac{22}{3} \] Now apply the Fundamental Theorem: \[ \int_{-2}^{3} (x^{2} - x - 6) \, dx = F(3) - F(-2) = -13.5 - \frac{22}{3} = -13.5 - 7.33 = -20.83 \] Thus, the definite integral evaluates to: \[ \int_{-2}^{3}(x^{2} - x - 6) \, dx = -20.83 \] **Final Answer:** The value of the integral is \(\mathbf{-20.83}\). To sketch the graph, plot the quadratic function \(y = x^2 - x - 6\) which crosses the x-axis at \(x = -2\) and \(x = 3\). Shade the region between the x-axis and the curve from \(x = -2\) to \(x = 3\) to illustrate the net area, which is negative since the curve lies below the x-axis in that interval.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad