Pregunta
Suppose an object moves along a line with velocity (in \( \mathrm{ft} / \mathrm{s} \) ) \( \mathrm{v}(\mathrm{t})=6-4 \mathrm{t} \), for \( 0 \leq \mathrm{t} \leq 3 \), where t is measured in seconds. The motion is in the positive direction on the interval \( \square \). (Type your answer in interval notation.)
Ask by Young Boyd. in the United States
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The object is moving in the positive direction on the interval [0, 1.5).
Solución
To determine when the object is moving in the positive direction, we need the velocity to be greater than zero.
The velocity function is given by:
v(t) = 6 – 4t
Set up the inequality for positive velocity:
6 – 4t > 0
Solve the inequality:
6 > 4t
t < 6/4
t < 1.5
Since t is in the interval [0, 3] and the velocity is positive when t < 1.5, the object is moving in the positive direction on the interval [0, 1.5).
Thus, the answer in interval notation is:
[0, 1.5)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
The object’s velocity function is given as \( v(t) = 6 - 4t \). To determine the interval where the object moves in the positive direction, we need to find where \( v(t) > 0 \). Setting up the inequality: \[ 6 - 4t > 0 \] Solving for \( t \): \[ 6 > 4t \] \[ \frac{6}{4} > t \] \[ t < 1.5 \] Therefore, the object moves in the positive direction from \( t = 0 \) to \( t = 1.5 \). In interval notation, the answer is: \[ [0, 1.5) \] In this interval, the velocity is positive, indicating that the object is moving in a positive direction.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium