Pregunta
upstudy study bank question image url

You want to buy a \( \$ 32,000 \) car. You can make a \( 10 \% \) down payment, and will finance the balance with a \( 2 \% \) interest rate for 36 months ( 3 years). What will your monthly payments be?

Ask by Gonzalez Byrd. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Your monthly payments will be approximately \$1,255.45.

Solución

To calculate the monthly payments for financing a car, we can use the formula for monthly payments on a loan: \[ \text{Monthly Payment} = \frac{\text{Loan Amount} \times \text{Interest Rate} \times (1 + \text{Interest Rate})^{Number of Payments}}{(1 + \text{Interest Rate})^{Number of Payments} - 1} \] Given: - Loan Amount = $32,000 - Interest Rate = 2% = 0.02 - Number of Payments = 36 months Substitute the values into the formula to calculate the monthly payment. Calculate the value by following steps: - step0: Calculate: \(\frac{32000\times 0.02\left(1+0.02\right)^{36}}{\left(\left(1+0.02\right)^{36}-1\right)}\) - step1: Remove the parentheses: \(\frac{32000\times 0.02\left(1+0.02\right)^{36}}{\left(1+0.02\right)^{36}-1}\) - step2: Add the numbers: \(\frac{32000\times 0.02\times 1.02^{36}}{\left(1+0.02\right)^{36}-1}\) - step3: Add the numbers: \(\frac{32000\times 0.02\times 1.02^{36}}{1.02^{36}-1}\) - step4: Convert the expressions: \(\frac{32000\times 0.02\left(\frac{51}{50}\right)^{36}}{1.02^{36}-1}\) - step5: Convert the expressions: \(\frac{32000\times 0.02\left(\frac{51}{50}\right)^{36}}{\left(\frac{51}{50}\right)^{36}-1}\) - step6: Multiply: \(\frac{640\times \frac{51^{36}}{50^{36}}}{\left(\frac{51}{50}\right)^{36}-1}\) - step7: Subtract the numbers: \(\frac{640\times \frac{51^{36}}{50^{36}}}{\frac{51^{36}-50^{36}}{50^{36}}}\) - step8: Evaluate the power: \(\frac{\frac{51^{36}}{2^{29}\times 5^{71}}}{\frac{51^{36}-50^{36}}{50^{36}}}\) - step9: Multiply by the reciprocal: \(\frac{51^{36}}{2^{29}\times 5^{71}}\times \frac{50^{36}}{51^{36}-50^{36}}\) - step10: Rewrite the expression: \(\frac{51^{36}}{2^{29}\times 5^{71}}\times \frac{2^{36}\times 25^{36}}{51^{36}-50^{36}}\) - step11: Reduce the numbers: \(\frac{51^{36}}{5^{71}}\times \frac{2^{7}\times 25^{36}}{51^{36}-50^{36}}\) - step12: Rewrite the expression: \(\frac{51^{36}}{5^{71}}\times \frac{2^{7}\times 5^{72}}{51^{36}-50^{36}}\) - step13: Reduce the numbers: \(51^{36}\times \frac{2^{7}\times 5}{51^{36}-50^{36}}\) - step14: Multiply: \(\frac{51^{36}\times 640}{51^{36}-50^{36}}\) The monthly payment for financing the car will be approximately $1,255.45.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find your monthly payments, first calculate the down payment and the loan amount. A \( 10\% \) down payment on a \( \$ 32,000 \) car is \( 0.10 \times 32,000 = \$ 3,200 \). This means you'll finance \( 32,000 - 3,200 = \$ 28,800 \). Next, use the formula for monthly payments on an installment loan, which is given by: \[ M = P \frac{r(1+r)^n}{(1+r)^n - 1} \] where: - \( M \) is the monthly payment, - \( P \) is the loan amount (\$28,800), - \( r \) is the monthly interest rate (annual rate of \( 2\% \) divided by \( 12 \) months, so \( 0.02/12 ≈ 0.0016667 \)), - \( n \) is the number of payments (36 months). Plugging in the values: \[ M = 28800 \frac{0.0016667(1+0.0016667)^{36}}{(1+0.0016667)^{36} - 1} \] Calculating: 1. Calculate \( (1 + 0.0016667)^{36} \approx 1.0614 \) 2. The numerator becomes \( 28800 \cdot 0.0016667 \cdot 1.0614 \approx 51.0398 \) 3. The denominator is \( 1.0614 - 1 = 0.0614 \) Now, calculate \( M \): \[ M ≈ 51.0398 / 0.0614 ≈ 830.63 \] Thus, your monthly payments would be approximately \( \$830.63 \).

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad