Find or approximate the point(s) at which the given function equals its average value on the given interval. \( f(x)=1-\frac{x^{2}}{a^{2}} ;[0, a] \) where \( a \) is a positive real number The point(s) at which \( f(x) \) equals its average value is/are (Type an exact answer, using radicals as needed. Use a comma to separate answers as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the average value of the function \( f(x) = 1 - \frac{x^2}{a^2} \) over the interval \([0, a]\), we first need to calculate the average value: \[ \text{Average Value} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx = \frac{1}{a-0} \int_{0}^{a} \left(1 - \frac{x^2}{a^2}\right) \, dx \] Calculating the integral: \[ \int_{0}^{a} \left(1 - \frac{x^2}{a^2}\right) \, dx = \left[x - \frac{x^3}{3a^2}\right]_{0}^{a} = \left[a - \frac{a^3}{3a^2}\right] = a - \frac{a}{3} = \frac{2a}{3} \] Thus, \[ \text{Average Value} = \frac{1}{a} \cdot \frac{2a}{3} = \frac{2}{3} \] Next, we set \( f(x) \) equal to the average value: \[ 1 - \frac{x^2}{a^2} = \frac{2}{3} \] Solving this equation: \[ -\frac{x^2}{a^2} = \frac{2}{3} - 1 = -\frac{1}{3} \] Multiplying both sides by -1: \[ \frac{x^2}{a^2} = \frac{1}{3} \] Now, multiplying both sides by \( a^2 \): \[ x^2 = \frac{a^2}{3} \] Taking the square root: \[ x = \frac{a}{\sqrt{3}}, \quad x = -\frac{a}{\sqrt{3}} \quad (\text{only } x = \frac{a}{\sqrt{3}} \text{ is in } [0, a]) \] Therefore, the point at which \( f(x) \) equals its average value is: \[ \frac{a}{\sqrt{3}} \]
preguntas relacionadas
