Pregunta
upstudy study bank question image url

Find or approximate the point(s) at which the given function equals its average value on the given interval. \( f(x)=1-\frac{x^{2}}{a^{2}} ;[0, a] \) where \( a \) is a positive real number The point(s) at which \( f(x) \) equals its average value is/are (Type an exact answer, using radicals as needed. Use a comma to separate answers as needed.)

Ask by Schneider Floyd. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The point at which \( f(x) \) equals its average value is \( \frac{a}{\sqrt{3}} \).

Solución

To find the point(s) at which the function \( f(x) = 1 - \frac{x^2}{a^2} \) equals its average value on the interval \([0, a]\), we will follow these steps: 1. **Calculate the average value of the function on the interval**: The average value \( A \) of a function \( f(x) \) on the interval \([b, c]\) is given by the formula: \[ A = \frac{1}{c-b} \int_b^c f(x) \, dx \] In our case, \( b = 0 \) and \( c = a \). 2. **Set up the integral**: We need to compute: \[ A = \frac{1}{a-0} \int_0^a \left(1 - \frac{x^2}{a^2}\right) \, dx \] 3. **Evaluate the integral**: We will calculate the integral: \[ \int_0^a \left(1 - \frac{x^2}{a^2}\right) \, dx \] 4. **Set \( f(x) \) equal to the average value and solve for \( x \)**: We will find the points where \( f(x) = A \). Let's perform these calculations step by step. ### Step 1: Calculate the average value \( A \) First, we compute the integral: \[ \int_0^a \left(1 - \frac{x^2}{a^2}\right) \, dx = \int_0^a 1 \, dx - \int_0^a \frac{x^2}{a^2} \, dx \] Calculating each part: 1. \(\int_0^a 1 \, dx = a\) 2. \(\int_0^a \frac{x^2}{a^2} \, dx = \frac{1}{a^2} \cdot \frac{x^3}{3} \bigg|_0^a = \frac{1}{a^2} \cdot \frac{a^3}{3} = \frac{a}{3}\) Now, substituting back: \[ \int_0^a \left(1 - \frac{x^2}{a^2}\right) \, dx = a - \frac{a}{3} = \frac{2a}{3} \] Now, we can find the average value: \[ A = \frac{1}{a} \cdot \frac{2a}{3} = \frac{2}{3} \] ### Step 2: Set \( f(x) \) equal to \( A \) Now we set \( f(x) = A \): \[ 1 - \frac{x^2}{a^2} = \frac{2}{3} \] ### Step 3: Solve for \( x \) Rearranging the equation: \[ -\frac{x^2}{a^2} = \frac{2}{3} - 1 \] \[ -\frac{x^2}{a^2} = -\frac{1}{3} \] \[ \frac{x^2}{a^2} = \frac{1}{3} \] \[ x^2 = \frac{a^2}{3} \] \[ x = \pm \frac{a}{\sqrt{3}} \] Since we are looking for points in the interval \([0, a]\), we only take the positive solution: \[ x = \frac{a}{\sqrt{3}} \] ### Final Answer The point at which \( f(x) \) equals its average value is: \[ \frac{a}{\sqrt{3}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the average value of the function \( f(x) = 1 - \frac{x^2}{a^2} \) over the interval \([0, a]\), we first need to calculate the average value: \[ \text{Average Value} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx = \frac{1}{a-0} \int_{0}^{a} \left(1 - \frac{x^2}{a^2}\right) \, dx \] Calculating the integral: \[ \int_{0}^{a} \left(1 - \frac{x^2}{a^2}\right) \, dx = \left[x - \frac{x^3}{3a^2}\right]_{0}^{a} = \left[a - \frac{a^3}{3a^2}\right] = a - \frac{a}{3} = \frac{2a}{3} \] Thus, \[ \text{Average Value} = \frac{1}{a} \cdot \frac{2a}{3} = \frac{2}{3} \] Next, we set \( f(x) \) equal to the average value: \[ 1 - \frac{x^2}{a^2} = \frac{2}{3} \] Solving this equation: \[ -\frac{x^2}{a^2} = \frac{2}{3} - 1 = -\frac{1}{3} \] Multiplying both sides by -1: \[ \frac{x^2}{a^2} = \frac{1}{3} \] Now, multiplying both sides by \( a^2 \): \[ x^2 = \frac{a^2}{3} \] Taking the square root: \[ x = \frac{a}{\sqrt{3}}, \quad x = -\frac{a}{\sqrt{3}} \quad (\text{only } x = \frac{a}{\sqrt{3}} \text{ is in } [0, a]) \] Therefore, the point at which \( f(x) \) equals its average value is: \[ \frac{a}{\sqrt{3}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad