Pregunta
\[ \begin{array}{l}\text { Find the value. } \\ \ln \left(\frac{1}{e^{6}}\right) \\ \ln \left(\frac{1}{e^{6}}\right)=\square\end{array} \]
Ask by Harris Schneider. in the United States
Nov 15,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The value is -6.
Solución
Calculate or simplify the expression \( \ln\left(\frac{1}{e^{6}}\right) \).
Calculate the value by following steps:
- step0: Calculate:
\(\ln{\left(\frac{1}{e^{6}}\right)}\)
- step1: Write in exponential form:
\(\ln{\left(e^{-6}\right)}\)
- step2: Simplify the expression:
\(-6\)
The value of \( \ln\left(\frac{1}{e^{6}}\right) \) is -6.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To simplify \(\ln \left(\frac{1}{e^{6}}\right)\), we can use the property of logarithms that states \(\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)\). In this case, we have: \[ \ln\left(\frac{1}{e^{6}}\right) = \ln(1) - \ln(e^{6}). \] Since \(\ln(1) = 0\) and \(\ln(e^{6}) = 6\), we can substitute these values in: \[ \ln\left(\frac{1}{e^{6}}\right) = 0 - 6 = -6. \] Thus, the final value is: \[ \ln \left(\frac{1}{e^{6}}\right) = -6. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium