The first term of an arithmetic series is 51 and the eighth term is 100 . a) Find the twentieth term of the series. b) Determine the sum of the first twenty terms of the series.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the common difference \( d \) of the arithmetic series, use the information provided. The first term \( a_1 = 51 \) and the eighth term \( a_8 = 100 \). The eighth term can be expressed as: \[ a_8 = a_1 + 7d \] Substituting the known values: \[ 100 = 51 + 7d \] Solving for \( d \): \[ 49 = 7d \] \[ d = 7 \] Now, we can find the twentieth term \( a_{20} \): \[ a_{20} = a_1 + 19d \] \[ a_{20} = 51 + 19 \times 7 \] \[ a_{20} = 51 + 133 = 184 \] Next, to find the sum of the first twenty terms \( S_{20} \): \[ S_n = \frac{n}{2}(a_1 + a_n) \] Where \( n = 20 \) and \( a_{20} = 184 \): \[ S_{20} = \frac{20}{2}(51 + 184) \] \[ S_{20} = 10(235) = 2350 \] So, the answers are: a) The twentieth term of the series is \( 184 \). b) The sum of the first twenty terms of the series is \( 2350 \).
