Pregunta
upstudy study bank question image url

Calculate the value of .
The sum of the first three terms of a geometric sequence is . The sum of the
fourth, fifth and sixth term of the same sequence is . Determine the value of
common ratio .

Ask by Fuentes Weaver. in South Africa
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

and the common ratio .

Solución

To find the value of and the common ratio in a geometric sequence, we can use the formula for the sum of the first terms of a geometric sequence:
where:
  • is the sum of the first terms,
  • is the first term,
  • is the common ratio,
  • is the number of terms.
Given that the sum of the first three terms is and the sum of the fourth, fifth, and sixth terms is , we can set up two equations using the formula for the sum of the first terms:
  1. For the first three terms:
  1. For the fourth, fifth, and sixth terms:
We can simplify these equations and solve for and to find the value of and the common ratio .
Solve the system of equations by following steps:
  • step0: Solve using the substitution method:
  • step1: Calculate:
  • step2: Solve the equation:
  • step3: Substitute the value of
  • step4: Simplify:
  • step5: Swap the sides:
  • step6: Multiply both sides of the equation by
  • step7: Multiply the terms:
  • step8: Divide the terms:
  • step9: Multiply by the reciprocal:
  • step10: Multiply:
  • step11: Simplify the equation:
  • step12: Calculate:
  • step13: Simplify the root:
  • step14: Substitute the value of
  • step15: Substitute back:
  • step16: Calculate:
  • step17: Calculate:
  • step18: Check the solution:
  • step19: Rewrite:

    The solution to the system of equations is and or .
Therefore, the value of is and the common ratio is or .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve for , first, note that the first three terms of the geometric sequence can be represented as , , and . The sum of these terms can be expressed as:
For the fourth, fifth, and sixth terms of the sequence, we have , , and . The sum of these terms is:
Now we have two equations:
From the first equation, we can express as:
Substituting into the second equation gives us:
Re-arranging the equation leads to:
Calculating the right side:
This leads to:
Next, multiply through by 16 to eliminate decimals:
Rearranging gives us:
Dividing the entire equation by 63 simplifies it:
Now, to find the roots, we can try possible rational roots or use numerical methods. Testing :
Testing :
Testing :
Using numerical methods or a graphing calculator may be necessary as this cubic polynomial can be a bit challenging. Eventually, once you find a common ratio , substitute it back into the equation for to find your value for . Assuming is computable (for example ), calculate both and based on the derived sequences.
Ultimately, the value of and the common ratio depend on the accuracy of the calculations, so keep an eye on those and ensure the computed terms validate against the original sums provided. Happy calculation!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad