Pregunta
upstudy study bank question image url

Among all right circular cones with a slant height of 15 , what are the dimensions (radius and height) that maximize the volume of the cone? The slant height of a cone is the distance from the oute edge of the base to the vertex Let V be the volume of the cone. What is the objective function in terms of the height of the cone, h ? \( \mathrm{V}=\frac{\pi}{3}\left(225 \mathrm{~h}-\mathrm{h}^{3}\right) \) (Type an expression Type an exact answer, using \( \pi \) as needed.) The interval of interest of the objective function is \( [0,225] \) (Simplify your answer Type your answer in interval notation.)

Ask by Lindsey Parry. in the United States
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The interval of interest is \([0,\ 15]\).

Solución

To determine the objective function and the interval of interest for maximizing the volume \( V \) of a right circular cone with a fixed slant height of 15, let's break down the problem step-by-step. ### 1. Relationship Between Slant Height, Radius, and Height For a right circular cone: - **Slant height (\( l \))**: The distance from the edge of the base to the vertex. - **Radius (\( r \))**: The radius of the base. - **Height (\( h \))**: The perpendicular distance from the base to the vertex. These quantities are related by the Pythagorean theorem: \[ l^2 = r^2 + h^2 \] Given that the slant height \( l = 15 \), we have: \[ 15^2 = r^2 + h^2 \implies 225 = r^2 + h^2 \implies r^2 = 225 - h^2 \] ### 2. Volume of the Cone The volume \( V \) of a right circular cone is given by: \[ V = \frac{1}{3}\pi r^2 h \] Substituting \( r^2 = 225 - h^2 \) into the volume formula: \[ V = \frac{1}{3}\pi (225 - h^2) h = \frac{\pi}{3}(225h - h^3) \] Thus, the **objective function** in terms of the height \( h \) is: \[ V(h) = \frac{\pi}{3}(225h - h^3) \] ### 3. Determining the Interval of Interest The height \( h \) must satisfy the condition derived from the Pythagorean relationship: \[ r^2 = 225 - h^2 \geq 0 \implies h^2 \leq 225 \implies h \leq 15 \] Additionally, the height cannot be negative, so: \[ 0 \leq h \leq 15 \] Therefore, the **interval of interest** for the objective function is: \[ [0, 15] \] ### Summary - **Objective Function**: \[ V(h) = \frac{\pi}{3}(225h - h^3) \] - **Interval of Interest**: \[ [0, 15] \] **Final Answer:** The interval of interest is \([0,\ 15]\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To maximize the volume of the cone, we need to express the radius in terms of the height, h. Given the slant height \( s \) of 15, we can use the Pythagorean theorem: \( s^2 = r^2 + h^2 \). Substituting into the volume formula, we can express \( r \) as \( r = \sqrt{s^2 - h^2} = \sqrt{15^2 - h^2} = \sqrt{225 - h^2} \). This gives us the volume \( V(h) = \frac{\pi}{3}r^2h = \frac{\pi}{3}(225 - h^2)h = \frac{\pi}{3}(225h - h^3) \). The objective function in terms of the height h is: \[\mathrm{V}=\frac{\pi}{3}\left(225 \mathrm{h}-\mathrm{h}^{3}\right).\] The interval of interest for the height of the cone based on the slant height constraint is: \[ [0, 15\sqrt{2}] \text{ or } [0, 15] \text{ since, geometrically, h cannot exceed s.} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad