Use reference angles to find the exact value of the following expression. Do not use a calculator. \[ \begin{array}{l}\sin \left(-300^{\circ}\right) \\ \text { A. select the correct choice below and, if necessary, fill in the answer box to complete your choice. } \\ \text { (Simplify your answer. Type an exact answer, using radicals as needed. Use integers or fractions fo } \\ \text { the denominator.) } \\ \text { B. The answer is undefined. }\end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find \(\sin(-300^{\circ})\), we first use the property of sine that states \(\sin(-\theta) = -\sin(\theta)\). Thus, \(\sin(-300^{\circ}) = -\sin(300^{\circ})\). Next, we need to find the reference angle for \(300^{\circ}\). Since \(300^{\circ}\) is in the fourth quadrant, we calculate the reference angle as \(360^{\circ} - 300^{\circ} = 60^{\circ}\). The sine of \(300^{\circ}\) in the fourth quadrant is negative, hence: \[ \sin(300^{\circ}) = -\sin(60^{\circ}) = -\frac{\sqrt{3}}{2} \] Therefore, \[ \sin(-300^{\circ}) = -(-\frac{\sqrt{3}}{2}) = \frac{\sqrt{3}}{2} \] So the exact value of \(\sin(-300^{\circ})\) is \(\frac{\sqrt{3}}{2}\).
