Pregunta
upstudy study bank question image url

Use reference angles to find the exact value of the following expression. Do not use a calculator. \[ \begin{array}{l}\sin \left(-300^{\circ}\right) \\ \text { A. select the correct choice below and, if necessary, fill in the answer box to complete your choice. } \\ \text { (Simplify your answer. Type an exact answer, using radicals as needed. Use integers or fractions fo } \\ \text { the denominator.) } \\ \text { B. The answer is undefined. }\end{array} \]

Ask by Lindsey Cummings. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The answer is \( -\frac{\sqrt{3}}{2} \).

Solución

To find the exact value of \( \sin(-300^\circ) \) using reference angles, we can follow these steps: 1. Find the reference angle for \( -300^\circ \). 2. Determine the sign of the sine function based on the quadrant in which the angle lies. 3. Calculate the exact value of the sine function using the reference angle. Let's start by finding the reference angle for \( -300^\circ \): The reference angle for \( -300^\circ \) is the positive acute angle formed by the terminal side of \( -300^\circ \) and the x-axis. To find this angle, we can add \( 360^\circ \) to \( -300^\circ \) to get an equivalent positive angle: \[ -300^\circ + 360^\circ = 60^\circ \] So, the reference angle for \( -300^\circ \) is \( 60^\circ \). Next, we determine the sign of the sine function based on the quadrant in which the angle lies. Since \( -300^\circ \) is in the fourth quadrant, the sine function is negative in the fourth quadrant. Therefore, the exact value of \( \sin(-300^\circ) \) is \( -\sin(60^\circ) \). Now, we calculate the exact value of \( \sin(60^\circ) \): \[ \sin(60^\circ) = \frac{\sqrt{3}}{2} \] So, the exact value of \( \sin(-300^\circ) \) is \( -\frac{\sqrt{3}}{2} \). Therefore, the answer is \( -\frac{\sqrt{3}}{2} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find \(\sin(-300^{\circ})\), we first use the property of sine that states \(\sin(-\theta) = -\sin(\theta)\). Thus, \(\sin(-300^{\circ}) = -\sin(300^{\circ})\). Next, we need to find the reference angle for \(300^{\circ}\). Since \(300^{\circ}\) is in the fourth quadrant, we calculate the reference angle as \(360^{\circ} - 300^{\circ} = 60^{\circ}\). The sine of \(300^{\circ}\) in the fourth quadrant is negative, hence: \[ \sin(300^{\circ}) = -\sin(60^{\circ}) = -\frac{\sqrt{3}}{2} \] Therefore, \[ \sin(-300^{\circ}) = -(-\frac{\sqrt{3}}{2}) = \frac{\sqrt{3}}{2} \] So the exact value of \(\sin(-300^{\circ})\) is \(\frac{\sqrt{3}}{2}\).

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad