Pregunta
upstudy study bank question image url

A parachutist of mass 50.0 kg jumps out of an airplane at a height of 1000 m . The parachute deploys, and she lands on the ground with a speed of \( 5.0 \mathrm{~m} / \mathrm{s} \). How much energy was lost to air friction during this jump? 1) 49400 J 2) 98700 J 3) 198000 J 4) 489000 J 5) 534000 J

Ask by Donnelly Dawson. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The energy lost to air friction during the jump is approximately 489,000 J.

Solución

We start by calculating the gravitational potential energy (PE) the parachutist has at 1000 m:   PE_initial = m × g × h     = 50.0 kg × 9.8 m/s² × 1000 m     = 490,000 J At the time of landing, she has kinetic energy (KE):   KE_final = ½ × m × v²     = ½ × 50.0 kg × (5.0 m/s)²     = 25.0 × 25     = 625 J The energy lost to air friction is the difference between the initial potential energy and the final kinetic energy:   Energy lost = PE_initial − KE_final     = 490,000 J − 625 J     ≈ 489,375 J Rounding this to the closest option gives approximately 489,000 J. Thus, the correct answer is option 4: 489,000 J.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much energy was lost to air friction during the parachutist's jump, we need to calculate the gravitational potential energy at the beginning of the jump and the kinetic energy just before landing. 1. **Gravitational Potential Energy (GPE)** at the height of 1000 m: \[ \text{GPE} = mgh = 50.0 \, \text{kg} \times 9.81 \, \text{m/s}^2 \times 1000 \, \text{m} = 490500 \, \text{J} \] 2. **Kinetic Energy (KE)** when landing at 5 m/s: \[ \text{KE} = \frac{1}{2} mv^2 = \frac{1}{2} \times 50.0 \, \text{kg} \times (5.0 \, \text{m/s})^2 = 1250 \, \text{J} \] 3. **Energy lost to air friction** can be calculated by subtracting the kinetic energy from the gravitational potential energy: \[ \text{Energy lost} = \text{GPE} - \text{KE} = 490500 \, \text{J} - 1250 \, \text{J} = 489250 \, \text{J} \] This rounds to approximately 489000 J. Therefore, the energy lost to air friction is closest to option 4) 489000 J. **So the answer is:** 4) 489000 J.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad