For the piecewise linear function, find (a) \( f(-3) \), (b) \( f(-1) \), (c) \( f(0),( \) d) \( f(2) \), and \( (e) f(5) \). \( f(x)=\left\{\begin{array}{ll}3 x & \text { if } x \leq-1 \\ x-2 & \text { if } x>-1\end{array}\right. \) (a) \( f(-3)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the values of the piecewise linear function \( f(x) \), we can evaluate it piece by piece based on the definitions provided. (a) For \( f(-3) \): Since \(-3 \leq -1\), we use the first part of the function \( f(x) = 3x \). Therefore, \( f(-3) = 3(-3) = -9 \). (b) For \( f(-1) \): Here, \(-1\) is equal to \(-1\) so we use the first part again \( f(x) = 3x \). Thus, \( f(-1) = 3(-1) = -3 \). (c) For \( f(0) \): Since \( 0 > -1 \), we switch to the second part of the function, \( f(x) = x - 2 \). Thus, \( f(0) = 0 - 2 = -2 \). (d) For \( f(2) \): Again, \( 2 > -1 \) directs us to the second part, resulting in \( f(2) = 2 - 2 = 0 \). (e) For \( f(5) \): Following the pattern, since \( 5 > -1 \), we again utilize the second part, leading to \( f(5) = 5 - 2 = 3 \). So to summarize: (a) \( f(-3) = -9 \) (b) \( f(-1) = -3 \) (c) \( f(0) = -2 \) (d) \( f(2) = 0 \) (e) \( f(5) = 3 \) And, your answer is: \( f(-3) = -9 \)
