Pregunta
upstudy study bank question image url

The height, \( h \), in feet of the tip of the hour hand of a wall clock varies from 9 feet to 10 feet. Which of the following equations can be used to model the height as a function of time, \( t \), in hours? Assume that the time at \( t=0 \) is \( 12: 00 \) a.m. \( h=0.5 \cos \left(\frac{\pi}{12} t\right)+9.5 \) \( h=0.5 \cos \left(\frac{\pi}{6} t\right)+9.5 \) \( h=\cos \left(\frac{\pi}{12} t\right)+9 \) \( h=\cos \left(\frac{\pi}{6} t\right)+9 \)

Ask by Cummings Newton. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct equation to model the height is \( h = 0.5 \cos\left(\frac{\pi}{6} t\right) + 9.5 \).

Solución

The hour hand of a clock completes a full rotation in 12 hours. For a cosine function of the form   h = A cos(Bt) + D, the period is given by (2π)/B. Since the hour hand has a period of 12 hours, we have   (2π)/B = 12  ⟹  B = (2π)/12 = π/6. The tip of the hour hand varies from 9 feet (minimum) to 10 feet (maximum). The amplitude, A, is half the difference between the maximum and minimum heights:   Amplitude A = (10 − 9)/2 = 0.5. The vertical shift, D, is the average of the maximum and minimum heights:   D = (10 + 9)/2 = 9.5. Thus, the height as a function of time is modeled by:   h = 0.5 cos((π/6)t) + 9.5. This corresponds to the second equation provided.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To model the height of the tip of the hour hand of a wall clock as a function of time \( t \), it's important to know the period of the function and its vertical shift. The hour hand completes a full rotation in 12 hours, so the equation should have a factor of \(\frac{\pi}{12}\) to reflect this period. The height varies between 9 feet and 10 feet, averaging to 9.5 feet. The amplitude, half the distance between maximum and minimum, is 0.5 feet. Thus, the correct equation is \( h = 0.5 \cos \left(\frac{\pi}{12} t\right) + 9.5 \). Now, let's sprinkle in some fun facts! The clock we refer to today has roots in ancient civilizations; the Egyptians created sundials over 3,500 years ago! They laid the groundwork for our modern understanding of timekeeping, showing just how integral time has been to human progress and structure. Have you ever tried timing something with a clock? A common mistake is not considering the time unit accurately. For instance, if you're observing the hour hand movements, remember that it moves steadily, not in jumps, which can be confusing at first! Stay focused on fractions of hours to accurately track the hour hand's height.

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad