Pregunta
upstudy study bank question image url

Solve for \( x \) : \( \begin{array}{ll}2.2 .1 & 2-16 x^{-\frac{1}{3}}=0 \\ 2.2 .2 & 4^{x}+8=9.2^{x} \\ 2.2 .3 & \sqrt[x]{9}=243\end{array} \) Simplify fully:

Ask by Guzman Alexander. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solutions: - Equation 2.2.1: \( x = 512 \) - Equation 2.2.2: \( x = 0 \) or \( x = 3 \) - Equation 2.2.3: \( x = \frac{2}{5} \)

Solución

We are given three equations to solve for x. We'll solve each separately. ───────────────────────────── Equation 2.2.1: 2 – 16·x^(–1/3) = 0 Step 1. Isolate the term with x:   2 = 16·x^(-1/3) Step 2. Divide both sides by 16:   x^(-1/3) = 2/16 = 1/8 Step 3. Recall that x^(–1/3) = 1/(x^(1/3)). Thus,   1/(x^(1/3)) = 1/8 Taking reciprocals,   x^(1/3) = 8 Step 4. Cube both sides to solve for x:   x = 8^3 = 512 ───────────────────────────── Equation 2.2.2: 4^x + 8 = 9·2^x Step 1. Write 4^x in terms of 2:   4^x = (2^2)^x = 2^(2x) Now the equation becomes:   2^(2x) + 8 = 9·2^x Step 2. Substitute y = 2^x. Then the equation becomes:   y^2 + 8 = 9y Step 3. Rearrange to form a quadratic equation:   y^2 – 9y + 8 = 0 Step 4. Factor the quadratic:   (y – 1)(y – 8) = 0 So, y = 1 or y = 8 Step 5. Convert back to x (recall y = 2^x):   If 2^x = 1, then x = 0 (because 2^0 = 1).   If 2^x = 8, then x = 3 (since 8 = 2^3). ───────────────────────────── Equation 2.2.3: ⁿ√9 = 243, where the radical signifies the xth root of 9 Step 1. Express the xth root notation as an exponent:   √[x]{9} = 9^(1/x) Thus, the equation becomes:   9^(1/x) = 243 Step 2. Write both sides with base 3:   9 = 3^2  and  243 = 3^5 So the equation is:   (3^2)^(1/x) = 3^5 Step 3. Simplify the left-hand side:   3^(2/x) = 3^5 Step 4. Equate the exponents (since the bases are the same):   2/x = 5 Solve for x:   x = 2/5 ───────────────────────────── Final Answers:  Equation 2.2.1: x = 512  Equation 2.2.2: x = 0 or x = 3  Equation 2.2.3: x = 2/5

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let’s tackle each part of the equation step by step. ### 2.2.1: \( 2 - 16x^{-\frac{1}{3}} = 0 \) First, rearranging the equation gives: \[ 16x^{-\frac{1}{3}} = 2 \] Dividing both sides by 16: \[ x^{-\frac{1}{3}} = \frac{2}{16} = \frac{1}{8} \] Taking the reciprocal: \[ x^{\frac{1}{3}} = 8 \] Now, cubing both sides to solve for \( x \): \[ x = 8^3 = 512 \] ### 2.2.2: \( 4^x + 8 = 9 \cdot 2^x \) Rewrite \( 4^x \) as \( (2^2)^x = 2^{2x} \): \[ 2^{2x} + 8 = 9 \cdot 2^x \] Now, let \( y = 2^x \), converting the equation to: \[ y^2 + 8 = 9y \] Rearranging gives: \[ y^2 - 9y + 8 = 0 \] Factoring: \[ (y - 1)(y - 8) = 0 \] So, \( y = 1 \) or \( y = 8 \). Since \( y = 2^x \): - If \( 2^x = 1 \), then \( x = 0 \). - If \( 2^x = 8 \), then \( 2^x = 2^3 \), so \( x = 3 \). Thus, the solutions are \( x = 0 \) and \( x = 3 \). ### 2.2.3: \( \sqrt[x]{9} = 243 \) Rewrite the equation: \[ 9^{\frac{1}{x}} = 243 \] Recognizing \( 9 = 3^2 \) and \( 243 = 3^5 \): \[ (3^2)^{\frac{1}{x}} = 3^5 \] This simplifies to: \[ 3^{\frac{2}{x}} = 3^5 \] Setting the exponents equal to each other: \[ \frac{2}{x} = 5 \] Cross-multiplying to solve for \( x \): \[ 2 = 5x \implies x = \frac{2}{5} \] ### Summary of Solutions: - **2.2.1:** \( x = 512 \) - **2.2.2:** \( x = 0 \) and \( x = 3 \) - **2.2.3:** \( x = \frac{2}{5} \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad