12. \( \sin \alpha=0,6 \) bo'lsa, \( \operatorname{tg} 2 \alpha \) ni toping \( \left(0<\alpha<\frac{\pi}{2}\right) \) : \( \begin{array}{llll}\text { A) } 3,42 ; & \text { B) } 3 \frac{3}{7} ; & \text { C) } \frac{7}{24} ; & \text { D) } \\ \text { 13. } \operatorname{tg} \alpha=\sqrt{5} \text { bo'lsa, } \sin 2 \alpha \text { ni toping: } \\ \begin{array}{llll}\text { A) } \frac{3 \sqrt{5}}{5} ; & \text { B) }-\frac{\sqrt{5}}{3} ; & \text { C) } \frac{\sqrt{5}}{3} ; & \text { D) } \\ \text { 14. } \operatorname{tg} \alpha=\sqrt{7} \text { bo'lsa, } \cos 2 \alpha \text { ni toping: } \\ \begin{array}{llll}\text { A) } \frac{4}{3} ; & \text { B) }-\frac{4}{3} ; & \text { C) } \frac{3}{4}\end{array}\end{array}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Keyin, \( \sin \alpha = 0.6 \) berilgan bo'lsa, \( \cos \alpha \) ni hisoblaymiz. Pifagor teoremasidan \( \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - 0.6^2} = \sqrt{1 - 0.36} = \sqrt{0.64} = 0.8 \). Endi \( \tan 2\alpha \) formulasi boʻyicha: \[ \tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha} \] Birinchidan, \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{0.6}{0.8} = 0.75 \). So'ngra \( \tan 2\alpha \) ni hisoblaymiz: \[ \tan 2\alpha = \frac{2 \cdot 0.75}{1 - 0.75^2} = \frac{1.5}{1 - 0.5625} = \frac{1.5}{0.4375} = \frac{24}{7} \approx 3.43 \] Shuning uchun to'g'ri javob \( 3 \frac{3}{7} \) bo'ladi. Bundan keyin, \( \tan \alpha = \sqrt{5} \) berilgan, shuning uchun \( \sin 2\alpha \) ni quyidagicha hisoblaymiz: \[ \sin 2\alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha} \] Bu holda \( \sin 2\alpha = \frac{2\sqrt{5}}{1 + 5} = \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3} \). Shunday qilib, to'g'ri javob \( \frac{\sqrt{5}}{3} \) bo'ladi. Shuningdek, \( \tan \alpha = \sqrt{7} \) bo'lsa, \( \cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} \) yordamida: \[ \cos 2\alpha = \frac{1 - 7}{1 + 7} = \frac{-6}{8} = -\frac{3}{4} \] Buni inobatga olganingizda, to'g'ri javob \( -\frac{3}{4} \) variantidir.
