Pregunta
upstudy study bank question image url

Stretch Your Thinking For a woodworking project, Tyler has cut 14 boards that are each \( \frac{3}{4} \) yard and one board that is \( 2 \frac{1}{4} \) yards. What is the total length of the boards Ty has cut? Show your work.

Ask by Harrington Weber. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Tyler has cut a total of 12 3/4 yards of boards.

Solución

Step 1: Calculate the total length of the 14 boards.  Each board is 3/4 yard, so the combined length is:   14 × (3/4) = (14 × 3)/4 = 42/4 Step 2: Convert the board of 2 1/4 yards into an improper fraction.  2 1/4 = (2×4 + 1)/4 = 9/4 Step 3: Add the lengths together.  Total length = (42/4) + (9/4) = (42 + 9)/4 = 51/4 yards Step 4: Simplify the fraction to a mixed number.  51 ÷ 4 = 12 with a remainder of 3, so 51/4 = 12 3/4 yards Therefore, Tyler has cut a total of 12 3/4 yards of boards.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the total length of the boards Tyler has cut, we'll first calculate the total length contributed by the 14 boards that are each \( \frac{3}{4} \) yard long. 1. Calculate the total length of the 14 boards: \[ 14 \times \frac{3}{4} = \frac{14 \times 3}{4} = \frac{42}{4} = 10.5 \text{ yards} \] 2. Now, convert \( 2 \frac{1}{4} \) yards to an improper fraction: \[ 2 \frac{1}{4} = 2 + \frac{1}{4} = \frac{8}{4} + \frac{1}{4} = \frac{9}{4} \text{ yards} \] 3. Now, add the length of the 14 boards to the length of the one board: \[ 10.5 + \frac{9}{4} \] To add these, we convert \( 10.5 \) to an improper fraction: \[ 10.5 = \frac{21}{2} \] To add \( \frac{21}{2} \) and \( \frac{9}{4} \), we need a common denominator (which is 4): \[ \frac{21}{2} = \frac{21 \times 2}{2 \times 2} = \frac{42}{4} \] So now we can add: \[ \frac{42}{4} + \frac{9}{4} = \frac{42 + 9}{4} = \frac{51}{4} \] 4. Finally, we can convert \( \frac{51}{4} \) back to a mixed number: \[ \frac{51}{4} = 12 \frac{3}{4} \text{ yards} \] Therefore, the total length of the boards Tyler has cut is \( 12 \frac{3}{4} \) yards.

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad