Pregunta
upstudy study bank question image url

19. A number \( n \) is the algebraic sum of two terms, one of which varies directly as \( u \) and the other inversely as \( u^{2} \). If \( n=22 \) when \( u=2 \) and \( n=56.5 \) when \( u=8 \), calculate the on value of \( n \) when \( u=10 \).

Ask by Horton Rogers. in Nigeria
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

When \( u = 10 \), \( n = 70.32 \).

Solución

Given that the number \( n \) is the algebraic sum of two terms, one of which varies directly as \( u \) and the other inversely as \( u^{2} \), we can express this relationship as: \[ n = ku + \frac{c}{u^2} \] where \( k \) and \( c \) are constants. We are given two sets of values for \( n \) and \( u \): 1. When \( u = 2 \), \( n = 22 \) 2. When \( u = 8 \), \( n = 56.5 \) We can use these values to form a system of equations to solve for the constants \( k \) and \( c \). Let's start by substituting the given values into the equation: 1. When \( u = 2 \), \( n = 22 \): \[ 22 = k(2) + \frac{c}{2^2} \] \[ 22 = 2k + \frac{c}{4} \] 2. When \( u = 8 \), \( n = 56.5 \): \[ 56.5 = k(8) + \frac{c}{8^2} \] \[ 56.5 = 8k + \frac{c}{64} \] Now, we have a system of two equations with two unknowns. We can solve this system to find the values of \( k \) and \( c \). Let's solve the system of equations to find the values of \( k \) and \( c \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}22=2k+\frac{c}{4}\\56.5=8k+\frac{c}{64}\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}k=\frac{88-c}{8}\\56.5=8k+\frac{c}{64}\end{array}\right.\) - step2: Substitute the value of \(k:\) \(56.5=8\times \frac{88-c}{8}+\frac{c}{64}\) - step3: Multiply the terms: \(56.5=88-c+\frac{c}{64}\) - step4: Swap the sides: \(88-c+\frac{c}{64}=56.5\) - step5: Convert the expressions: \(88-c+\frac{c}{64}=\frac{113}{2}\) - step6: Multiply both sides of the equation by LCD: \(\left(88-c+\frac{c}{64}\right)\times 64=\frac{113}{2}\times 64\) - step7: Simplify the equation: \(5632-63c=3616\) - step8: Move the constant to the right side: \(-63c=3616-5632\) - step9: Subtract the numbers: \(-63c=-2016\) - step10: Change the signs: \(63c=2016\) - step11: Divide both sides: \(\frac{63c}{63}=\frac{2016}{63}\) - step12: Divide the numbers: \(c=32\) - step13: Substitute the value of \(c:\) \(k=\frac{88-32}{8}\) - step14: Calculate: \(k=7\) - step15: Calculate: \(\left\{ \begin{array}{l}c=32\\k=7\end{array}\right.\) - step16: Check the solution: \(\left\{ \begin{array}{l}c=32\\k=7\end{array}\right.\) - step17: Rewrite: \(\left(c,k\right) = \left(32,7\right)\) The solution to the system of equations is \( c = 32 \) and \( k = 7 \). Now that we have found the values of \( k \) and \( c \), we can substitute them back into the original equation to find the value of \( n \) when \( u = 10 \): \[ n = 7u + \frac{32}{u^2} \] Substitute \( u = 10 \) into the equation: \[ n = 7(10) + \frac{32}{10^2} \] \[ n = 70 + \frac{32}{100} \] \[ n = 70 + 0.32 \] \[ n = 70.32 \] Therefore, the value of \( n \) when \( u = 10 \) is \( 70.32 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the value of \( n \) when \( u=10 \), let's express \( n \) based on the relationship given. We can write: \[ n = k \cdot u + \frac{m}{u^2} \] where \( k \) and \( m \) are constants to be determined. From the information given, we have two equations: 1. For \( u = 2 \): \[ 22 = k \cdot 2 + \frac{m}{2^2} \implies 22 = 2k + \frac{m}{4} \implies 88 = 8k + m \quad \text{(equation 1)} \] 2. For \( u = 8 \): \[ 56.5 = k \cdot 8 + \frac{m}{8^2} \implies 56.5 = 8k + \frac{m}{64} \implies 3632 = 512k + m \quad \text{(equation 2)} \] Now we have the following system of equations: 1. \( 8k + m = 88 \) 2. \( 512k + m = 3632 \) Subtract equation 1 from equation 2: \[ (512k + m) - (8k + m) = 3632 - 88 \] \[ 504k = 3544 \implies k = \frac{3544}{504} = 7 \] Substituting \( k = 7 \) back into equation 1: \[ 8 \cdot 7 + m = 88 \implies 56 + m = 88 \implies m = 32 \] Now we have \( k = 7 \) and \( m = 32 \). Thus, the equation for \( n \) is: \[ n = 7u + \frac{32}{u^2} \] Now, we need to find \( n \) when \( u = 10 \): \[ n = 7 \cdot 10 + \frac{32}{10^2} = 70 + \frac{32}{100} = 70 + 0.32 = 70.32 \] Hence, the value of \( n \) when \( u = 10 \) is: \[ \boxed{70.32} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad