Pregunta
upstudy study bank question image url

14. Emission Inspection Failures If \( 3 \% \) of all cars fail the emissions inspection, find the probability that in a sample of 90 cars, 3 will fail. Use the Poisson approximation.

Ask by Schneider Lane. in the United States
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that 3 out of 90 cars will fail the emissions inspection is approximately 0.220468.

Solución

To find the probability that in a sample of 90 cars, 3 will fail the emissions inspection, we can use the Poisson approximation. Given: - The probability of a car failing the emissions inspection is \(3\%\), which is \(0.03\). - The sample size is 90 cars. The Poisson distribution is given by the formula: \[ P(X = k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!} \] where: - \( P(X = k) \) is the probability of \( k \) events occurring. - \( e \) is the base of the natural logarithm. - \( \lambda \) is the average rate of events occurring. In this case, we want to find the probability that 3 cars will fail the emissions inspection. So, we set \( k = 3 \). First, we need to calculate the average rate of cars failing the emissions inspection, which is \( \lambda \). This can be calculated as: \[ \lambda = n \cdot p \] where: - \( n \) is the sample size (90 cars). - \( p \) is the probability of a car failing the emissions inspection (0.03). Now, we can substitute the values into the Poisson distribution formula to find the probability that 3 cars will fail the emissions inspection. Calculate the value by following steps: - step0: Calculate: \(90\times 0.03\) - step1: Multiply the numbers: \(2.7\) The average rate of cars failing the emissions inspection is \( \lambda = 2.7 \). Now, we can substitute the values into the Poisson distribution formula to find the probability that 3 cars will fail the emissions inspection. Simplify the expression by following steps: - step0: Solution: \(\frac{e^{-2.7}\left(2.7^{3}\right)}{3!}\) - step1: Evaluate: \(\frac{e^{-2.7}\times 2.7^{3}}{3!}\) - step2: Convert the expressions: \(\frac{e^{-\frac{27}{10}}\times 2.7^{3}}{3!}\) - step3: Convert the expressions: \(\frac{e^{-\frac{27}{10}}\left(\frac{27}{10}\right)^{3}}{3!}\) - step4: Multiply the numbers: \(\frac{\frac{27^{3}}{1000e^{\frac{27}{10}}}}{3!}\) - step5: Multiply by the reciprocal: \(\frac{27^{3}}{1000e^{\frac{27}{10}}}\times \frac{1}{3!}\) - step6: Rewrite the expression: \(\frac{3^{9}}{1000e^{\frac{27}{10}}}\times \frac{1}{3\times 2!}\) - step7: Reduce the fraction: \(\frac{3^{8}}{1000e^{\frac{27}{10}}}\times \frac{1}{2!}\) - step8: Multiply the terms: \(\frac{3^{8}}{1000e^{\frac{27}{10}}\times 2!}\) - step9: Multiply the terms: \(\frac{3^{8}}{2000e^{\frac{27}{10}}}\) - step10: Evaluate the power: \(\frac{6561}{2000e^{\frac{27}{10}}}\) - step11: Multiply by the Conjugate: \(\frac{6561e^{\frac{3}{10}}}{2000e^{\frac{27}{10}}\times e^{\frac{3}{10}}}\) - step12: Multiply the numbers: \(\frac{6561e^{\frac{3}{10}}}{2000e^{3}}\) The probability that in a sample of 90 cars, 3 will fail the emissions inspection is approximately 0.220468.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To use the Poisson approximation here, we first calculate the expected number of failures in a sample of 90 cars. This is given by \( \lambda = n \cdot p = 90 \cdot 0.03 = 2.7 \). The probability of observing exactly \( k = 3 \) failures can be calculated using the Poisson formula: \[ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \] Substituting the values, we have: \[ P(X = 3) = \frac{e^{-2.7} \cdot 2.7^3}{3!} = \frac{e^{-2.7} \cdot 19.713}{6} \] Now, calculating \( e^{-2.7} \approx 0.0672 \): \[ P(X = 3) \approx \frac{0.0672 \cdot 19.713}{6} \approx 0.2207 \] So, the probability that exactly 3 out of 90 cars will fail the emissions inspection is approximately \( 0.2207 \), or \( 22.07\% \). Enjoy the drive! Curious fact: The Poisson distribution is wonderful for modeling rare events! It’s commonly used in fields like telecommunications, traffic flow analysis, and even in epidemiology to predict occurrences of rare diseases. Just think about it next time you see those funky statistics! For the gearheads: knowing how emissions work in a car can help prevent failures during inspections. Simple maintenance, like checking your engine light or replacing old spark plugs, can drastically reduce emissions and help you pass your inspection with flying colors! Keep your car healthy and running clean!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad