Pregunta
upstudy study bank question image url

1. Find eigenvalues and eigenvectors of the following matrices: \[ A=\left(\begin{array}{rr}-1 & 0 \\ 1 & -1\end{array}\right), \quad E=\left(\begin{array}{lll}2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 1\end{array}\right) \]

Ask by Weston Weaver. in China
Dec 23,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Eigenvalues and Eigenvectors of Matrices \( A \) and \( E \)** - **Matrix \( A \):** - **Eigenvalue:** \( \lambda = -1 \) (with multiplicity 2) - **Eigenvectors:** Any scalar multiple of \( \begin{pmatrix} 0 \\ 1 \end{pmatrix} \) - **Matrix \( E \):** - **Eigenvalues:** \( \lambda = 2, 3, 1 \) - **Eigenvectors:** - For \( \lambda = 2 \): \( \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) - For \( \lambda = 3 \): \( \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) - For \( \lambda = 1 \): \( \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} \)

Solución

Let's find the eigenvalues and eigenvectors for the given matrices \( A \) and \( E \). ## 1. Matrix \( A \) \[ A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} \] ### **a. Finding Eigenvalues** To find the eigenvalues \( \lambda \), solve the characteristic equation: \[ \det(A - \lambda I) = 0 \] Compute \( A - \lambda I \): \[ A - \lambda I = \begin{pmatrix} -1 - \lambda & 0 \\ 1 & -1 - \lambda \end{pmatrix} \] Calculate the determinant: \[ \det(A - \lambda I) = (-1 - \lambda)^2 - (0 \cdot 1) = (-1 - \lambda)^2 = 0 \] Setting the determinant to zero: \[ (-1 - \lambda)^2 = 0 \implies \lambda = -1 \quad \text{(with multiplicity 2)} \] ### **b. Finding Eigenvectors** For \( \lambda = -1 \), solve \( (A - \lambda I)\mathbf{x} = 0 \): \[ (A + I)\mathbf{x} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ x_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \] This yields the system: \[ \begin{cases} 0 \cdot x_1 + 0 \cdot x_2 = 0 \\ 1 \cdot x_1 + 0 \cdot x_2 = 0 \end{cases} \] From the second equation: \[ x_1 = 0 \] The first equation doesn't provide additional information. Therefore, \( x_2 \) is free. **Eigenvectors corresponding to \( \lambda = -1 \):** \[ \mathbf{x} = \begin{pmatrix} 0 \\ t \end{pmatrix}, \quad t \in \mathbb{R} \] --- ## 2. Matrix \( E \) \[ E = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 1 \end{pmatrix} \] ### **a. Finding Eigenvalues** Since \( E \) is an upper triangular matrix, its eigenvalues are the entries on its diagonal: \[ \lambda_1 = 2, \quad \lambda_2 = 3, \quad \lambda_3 = 1 \] ### **b. Finding Eigenvectors** #### **i. Eigenvalue \( \lambda = 2 \)** Solve \( (E - 2I)\mathbf{x} = 0 \): \[ E - 2I = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & -1 \end{pmatrix} \] Set up the system: \[ \begin{cases} 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 = 0 \\ 0 \cdot x_1 + 1 \cdot x_2 + 4 \cdot x_3 = 0 \\ 0 \cdot x_1 + 0 \cdot x_2 - 1 \cdot x_3 = 0 \end{cases} \] From the first and third equations: \[ x_3 = 0 \] From the second equation: \[ x_2 = 0 \] \( x_1 \) is free. **Eigenvectors corresponding to \( \lambda = 2 \):** \[ \mathbf{x} = \begin{pmatrix} t \\ 0 \\ 0 \end{pmatrix}, \quad t \in \mathbb{R} \] #### **ii. Eigenvalue \( \lambda = 3 \)** Solve \( (E - 3I)\mathbf{x} = 0 \): \[ E - 3I = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & -2 \end{pmatrix} \] Set up the system: \[ \begin{cases} -1 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 = 0 \\ 0 \cdot x_1 + 0 \cdot x_2 + 4 \cdot x_3 = 0 \\ 0 \cdot x_1 + 0 \cdot x_2 - 2 \cdot x_3 = 0 \end{cases} \] From the second and third equations: \[ x_3 = 0 \] From the first equation: \[ x_1 = x_3 = 0 \] \( x_2 \) is free. **Eigenvectors corresponding to \( \lambda = 3 \):** \[ \mathbf{x} = \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix}, \quad t \in \mathbb{R} \] #### **iii. Eigenvalue \( \lambda = 1 \)** Solve \( (E - I)\mathbf{x} = 0 \): \[ E - I = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \end{pmatrix} \] Set up the system: \[ \begin{cases} 1 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 = 0 \\ 0 \cdot x_1 + 2 \cdot x_2 + 4 \cdot x_3 = 0 \\ 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 0 \end{cases} \] From the first equation: \[ x_1 = -x_3 \] From the second equation: \[ 2x_2 = -4x_3 \implies x_2 = -2x_3 \] Let \( x_3 = t \). **Eigenvectors corresponding to \( \lambda = 1 \):** \[ \mathbf{x} = \begin{pmatrix} -t \\ -2t \\ t \end{pmatrix} = t \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R} \] ## **Summary** - **Matrix \( A \):** - **Eigenvalue:** \( \lambda = -1 \) (with multiplicity 2) - **Eigenvectors:** Any scalar multiple of \( \begin{pmatrix} 0 \\ 1 \end{pmatrix} \) - **Matrix \( E \):** - **Eigenvalues and Eigenvectors:** - \( \lambda = 2 \): Eigenvectors are scalar multiples of \( \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) - \( \lambda = 3 \): Eigenvectors are scalar multiples of \( \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) - \( \lambda = 1 \): Eigenvectors are scalar multiples of \( \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the eigenvalues and eigenvectors of the given matrices, we first determine the eigenvalues by solving the characteristic polynomial \(\det(A - \lambda I) = 0\). **For Matrix A:** \[ A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} \] The characteristic polynomial is: \[ \det\left(\begin{pmatrix} -1 - \lambda & 0 \\ 1 & -1 - \lambda \end{pmatrix}\right) = (-1 - \lambda)(-1 - \lambda) - (0)(1) = (\lambda + 1)^2 \] Setting this equal to zero gives: \[ (\lambda + 1)^2 = 0 \implies \lambda = -1 \quad (\text{with algebraic multiplicity 2}) \] Now, we find the eigenvectors by substituting \(\lambda = -1\) into \((A - \lambda I)\mathbf{v} = 0\): \[ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \implies 1 \cdot x_1 = 0 \implies x_1 = 0 \] Thus, we can choose \(x_2 = t\), where \(t\) is any scalar. The eigenvector corresponding to \(\lambda = -1\) is: \[ \mathbf{v} = \begin{pmatrix} 0 \\ t \end{pmatrix} \] where \(t\) is a free variable. **For Matrix E:** \[ E = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 1 \end{pmatrix} \] To find the eigenvalues, calculate: \[ \det\left(\begin{pmatrix} 2 - \lambda & 0 & 1 \\ 0 & 3 - \lambda & 4 \\ 0 & 0 & 1 - \lambda \end{pmatrix}\right) = (2 - \lambda)(3 - \lambda)(1 - \lambda) \] Setting this product to zero gives the eigenvalues: \[ \lambda_1 = 2, \lambda_2 = 3, \lambda_3 = 1 \] Next, we find the eigenvectors for each eigenvalue. 1. **For \(\lambda = 2\)**: \[ (E - 2I) \mathbf{v} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & -1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \implies x_1 + x_3 = 0, \quad x_2 + 4x_3 = 0 \] Choosing \(x_3 = t\), we have \(x_1 = -t\) and \(x_2 = -4t\), giving the eigenvector: \[ \mathbf{v_1} = \begin{pmatrix} -t \\ -4t \\ t \end{pmatrix} \] 2. **For \(\lambda = 3\)**: \[ (E - 3I) \mathbf{v} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \implies -x_1 + x_3 = 0, \quad 4x_3 = 0 \] This implies \(x_3 = 0\) and consequently \(x_1 = 0\). Therefore \(x_2\) is free, leading to: \[ \mathbf{v_2} = \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix} \] 3. **For \(\lambda = 1\

preguntas relacionadas

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad