Pregunta
upstudy study bank question image url

Find each Derivative \( 41 y=\left(\frac{3 t^{2}-1}{3 t^{2}+1}\right)^{-3} \)

Ask by Henry Bradley. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( 41y = \left(\frac{3t^{2}-1}{3t^{2}+1}\right)^{-3} \) with respect to \( t \) is: \[ \frac{dy}{dt} = -\frac{36t (3t^{2} + 1)^{2}}{41 (3t^{2} - 1)^{4}} \]

Solución

We wish to differentiate   41y = [(3t² – 1)/(3t² + 1)]^(–3) with respect to t. We shall first solve for y and then differentiate. Step 1. Solve for y:   y = 1/41 · [(3t² – 1)/(3t² + 1)]^(–3) Step 2. Write y as a composition of functions. Let   u(t) = (3t² – 1)/(3t² + 1) so that   y = 1/41 · [u(t)]^(–3). Step 3. Differentiate using the chain rule. The derivative of u^(–3) with respect to u is –3u^(–4). Thus,   dy/dt = (1/41) · [–3u^(–4)] · u'(t)       = –3/(41) · u^(–4) · u'(t). Step 4. Find u'(t) using the quotient rule. Recall u(t) = f(t)/g(t), where   f(t) = 3t² – 1  and  g(t) = 3t² + 1. Their derivatives are:   f'(t) = 6t  and  g'(t) = 6t. The quotient rule gives:   u'(t) = [f'(t)g(t) – f(t)g'(t)] / [g(t)]²       = [6t(3t² + 1) – (3t² – 1)(6t)] / (3t² + 1)². Notice that both terms in the numerator have 6t:   = 6t[ (3t² + 1) – (3t² – 1) ] / (3t² + 1)²   = 6t[3t² + 1 – 3t² + 1] / (3t² + 1)²   = 6t(2) / (3t² + 1)²   = 12t / (3t² + 1)². Step 5. Substitute u'(t) back into the derivative for y:   dy/dt = –3/(41) · u^(–4) · [12t/(3t² + 1)²]       = –36t/(41) · u^(–4)/(3t² + 1)². Recall that u(t) = (3t² – 1)/(3t² + 1) so that   u^(–4) = [ (3t² – 1)/(3t² + 1) ]^(–4)       = [ (3t² + 1)/(3t² – 1) ]^(4). Substitute this in:   dy/dt = –36t/(41) · [ (3t² + 1)⁴/(3t² + 1)² · 1/(3t² – 1)⁴ ]       = –36t/(41) · (3t² + 1)^(4–2)/(3t² – 1)⁴       = –36t (3t² + 1)²/[41(3t² – 1)⁴]. Thus, the derivative is:   dy/dt = –36t (3t² + 1)² / [41 (3t² – 1)⁴].

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the derivative of \( 41 y=\left(\frac{3 t^{2}-1}{3 t^{2}+1}\right)^{-3} \), we start by applying the chain rule and the quotient rule. First, let \( u = \frac{3 t^2 - 1}{3 t^2 + 1} \). Then, we need to find \( \frac{dy}{dt} \) as follows: Using the chain rule: 1. Differentiate \( y \) with respect to \( u \): \[ \frac{dy}{du} = 41 \cdot (-3) u^{-4} = -123 u^{-4} \] 2. Now, we differentiate \( u \) with respect to \( t \) using the quotient rule: \[ \frac{du}{dt} = \frac{(3 t^2 + 1)(6t) - (3 t^2 - 1)(6t)}{(3 t^2 + 1)^2} \] Simplifying this gives: \[ \frac{du}{dt} = \frac{6t[(3t^2 + 1) - (3t^2 - 1)]}{(3t^2 + 1)^2} = \frac{6t \cdot 2}{(3t^2 + 1)^2} = \frac{12t}{(3t^2 + 1)^2} \] Now, combine these results to find the derivative \( \frac{dy}{dt} \): \[ \frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dt} = -123 u^{-4} \cdot \frac{12t}{(3t^2 + 1)^2} \] Substituting \( u \) back in: \[ \frac{dy}{dt} = -123 \left(\frac{3t^2 - 1}{3t^2 + 1}\right)^{-4} \cdot \frac{12t}{(3t^2 + 1)^2} \] This will give the final derivative, and can be simplified further if necessary.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad