Responder
- a) Interest: \$75, Total Amount: \$2,575
- b) Interest: \$1,080, Total Amount: \$7,080
- c) Interest: \$14, Total Amount: \$714
Solución
To calculate the simple interest and the total amount for each investment, we can use the formula for simple interest:
\[
I = P \times r \times t
\]
where:
- \( I \) is the interest,
- \( P \) is the principal amount (initial investment),
- \( r \) is the annual interest rate (in decimal),
- \( t \) is the time the money is invested for (in years).
The total amount \( A \) after the investment period can be calculated as:
\[
A = P + I
\]
Now, let's solve each part step by step.
### a) \( \$ 2500 \) at \( 6\% \) for \( 6 \) months
1. Convert the interest rate to decimal: \( r = \frac{6}{100} = 0.06 \).
2. Convert the time from months to years: \( t = \frac{6}{12} = 0.5 \) years.
3. Calculate the interest:
\[
I = 2500 \times 0.06 \times 0.5
\]
4. Calculate the total amount:
\[
A = 2500 + I
\]
### b) \( \$ 6000 \) at \( 6\% \) for \( 3 \) years
1. Convert the interest rate to decimal: \( r = 0.06 \).
2. Time is already in years: \( t = 3 \).
3. Calculate the interest:
\[
I = 6000 \times 0.06 \times 3
\]
4. Calculate the total amount:
\[
A = 6000 + I
\]
### c) \( \$ 700 \) at \( 8\% \) for \( 3 \) months
1. Convert the interest rate to decimal: \( r = \frac{8}{100} = 0.08 \).
2. Convert the time from months to years: \( t = \frac{3}{12} = 0.25 \) years.
3. Calculate the interest:
\[
I = 700 \times 0.08 \times 0.25
\]
4. Calculate the total amount:
\[
A = 700 + I
\]
Now, let's perform the calculations for each part.
Calculate the value by following steps:
- step0: Calculate:
\(2500\times 0.06\times 0.5\)
- step1: Multiply the terms:
\(150\times 0.5\)
- step2: Multiply the numbers:
\(75\)
Calculate or simplify the expression \( 700 * 0.08 * 0.25 \).
Calculate the value by following steps:
- step0: Calculate:
\(700\times 0.08\times 0.25\)
- step1: Multiply the terms:
\(56\times 0.25\)
- step2: Multiply the numbers:
\(14\)
Calculate or simplify the expression \( 6000 * 0.06 * 3 \).
Calculate the value by following steps:
- step0: Calculate:
\(6000\times 0.06\times 3\)
- step1: Multiply the terms:
\(360\times 3\)
- step2: Multiply the numbers:
\(1080\)
Calculate or simplify the expression \( 700 + 14 \).
Calculate the value by following steps:
- step0: Calculate:
\(700+14\)
- step1: Add the numbers:
\(714\)
Calculate or simplify the expression \( 2500 + 75 \).
Calculate the value by following steps:
- step0: Calculate:
\(2500+75\)
- step1: Add the numbers:
\(2575\)
Calculate or simplify the expression \( 6000 + 1080 \).
Calculate the value by following steps:
- step0: Calculate:
\(6000+1080\)
- step1: Add the numbers:
\(7080\)
Here are the calculations for each investment:
### a) \( \$ 2500 \) at \( 6\% \) for \( 6 \) months
- **Interest**:
\[
I = 2500 \times 0.06 \times 0.5 = 75
\]
- **Total Amount**:
\[
A = 2500 + 75 = 2575
\]
### b) \( \$ 6000 \) at \( 6\% \) for \( 3 \) years
- **Interest**:
\[
I = 6000 \times 0.06 \times 3 = 1080
\]
- **Total Amount**:
\[
A = 6000 + 1080 = 7080
\]
### c) \( \$ 700 \) at \( 8\% \) for \( 3 \) months
- **Interest**:
\[
I = 700 \times 0.08 \times 0.25 = 14
\]
- **Total Amount**:
\[
A = 700 + 14 = 714
\]
### Summary of Results:
- a) Interest: \( 75 \), Total Amount: \( 2575 \)
- b) Interest: \( 1080 \), Total Amount: \( 7080 \)
- c) Interest: \( 14 \), Total Amount: \( 714 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución