Pregunta
2. The following are probabilities for an experiment in which \( A \) and \( B \) are two possible events. \( P(A \cap B)=0.21 \), and \( P(A)=0.7 \). Find \( P(B \mid A) \).
Ask by Chavez Bond. in the United States
Feb 20,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( P(B \mid A) = 0.3 \)
Solución
We are given that P(A ∩ B) = 0.21 and P(A) = 0.7. The conditional probability P(B | A) is defined as the probability of B occurring given that A has occurred, and is computed as:
P(B | A) = P(A ∩ B) / P(A)
Substitute the given values:
P(B | A) = 0.21 / 0.7 = 0.3
Thus, the probability P(B | A) is 0.3.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To find \( P(B \mid A) \), we can use the formula for conditional probability: \[ P(B \mid A) = \frac{P(A \cap B)}{P(A)}. \] Given that \( P(A \cap B) = 0.21 \) and \( P(A) = 0.7 \), we can substitute these values into the formula: \[ P(B \mid A) = \frac{0.21}{0.7} = 0.3. \] Thus, \( P(B \mid A) = 0.3 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium