Pregunta
upstudy study bank question image url

14. Defermine the vatuelgs of \( p \) for which ithe squation \( (1-p) x^{3}+x+(1-p)=0 \) wil have acpual teots.

Ask by Carrillo Thornton. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For any real number \( p \), the equation \( (1-p)x^3 + x + (1-p) = 0 \) will have at least one real root.

Solución

To determine the values of \( p \) for which the equation \[ (1-p)x^3 + x + (1-p) = 0 \] will have actual roots, we need to analyze the conditions under which this cubic equation has real roots. ### Step 1: Identify the coefficients The equation can be rewritten in standard form as: \[ a x^3 + b x + c = 0 \] where: - \( a = 1 - p \) - \( b = 1 \) - \( c = 1 - p \) ### Step 2: Determine the conditions for real roots A cubic equation can have either one real root or three real roots. The discriminant of a cubic equation can help us determine the nature of the roots. However, for cubic equations, we can also analyze the behavior of the function. ### Step 3: Analyze the function The function can be expressed as: \[ f(x) = (1-p)x^3 + x + (1-p) \] To find the conditions for real roots, we can check the derivative to find critical points: \[ f'(x) = 3(1-p)x^2 + 1 \] ### Step 4: Analyze the derivative The critical points occur when \( f'(x) = 0 \): \[ 3(1-p)x^2 + 1 = 0 \] This gives us: \[ x^2 = -\frac{1}{3(1-p)} \] For \( x^2 \) to be non-negative, we need: \[ 1 - p > 0 \implies p < 1 \] ### Step 5: Check the behavior of the function - If \( p < 1 \), the function \( f(x) \) is a cubic function that can have either one or three real roots depending on the value of \( p \). - If \( p = 1 \), the equation simplifies to \( x + 0 = 0 \), which has one real root \( x = 0 \). - If \( p > 1 \), the leading coefficient \( 1 - p \) becomes negative, and the function will have one real root. ### Conclusion The equation will have actual roots for all values of \( p \). Thus, the values of \( p \) for which the equation has actual roots are: \[ p \in \mathbb{R} \] This means that for any real number \( p \), the equation will have at least one real root.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the values of \( p \) for which the equation \( (1-p) x^{3}+x+(1-p)=0 \) will have actual roots, we need to analyze the discriminant of the polynomial. A cubic equation can have either one real root and two complex roots or three real roots depending on the value of the discriminant. For three real roots, the discriminant must be greater than or equal to zero. Using the condition derived from the discriminant of a cubic equation, you can find the specific ranges for \( p \) that allow for the existence of three distinct real roots. Once you’ve calculated the discriminant, it can indicate that the function's behavior significantly alters based on whether \( p \) is above or below certain crucial values. Hence, probing into the behavior of the cubic function at key points helps in pinpointing the exact values of \( p \) that make it possible for the equation to have real solutions!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad