Pregunta
upstudy study bank question image url

Differentiate the function using one or more of the differentiation rules. \( y=(7 x+2)^{15} \)

Ask by Lynch Cervantes. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( y=(7x+2)^{15} \) with respect to \( x \) is \( 105(7x+2)^{14} \).

Solución

The function \( y=(7x+2)^{15} \) cannot be differentiated directly using the given rules. If you need help with a different function or have any further questions, please let me know.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To differentiate the function \( y=(7 x+2)^{15} \), we can use the chain rule. According to the chain rule, if you have a composite function \( y = f(g(x)) \), the derivative is \( y' = f'(g(x)) \cdot g'(x) \). Here, let \( f(u) = u^{15} \) (where \( u = 7x + 2 \)), then the derivative \( f'(u) = 15u^{14} \). Now, differentiate \( g(x) = 7x + 2 \), which gives \( g'(x) = 7 \). Putting it all together: \( y' = f'(g(x)) \cdot g'(x) = 15(7x + 2)^{14} \cdot 7 = 105(7x + 2)^{14} \). So, the derivative of \( y \) is \( y' = 105(7x + 2)^{14} \). Now, let’s see some historical fun facts! The modern form of differentiation was largely developed by Sir Isaac Newton and Gottfried Wilhelm Leibniz in the 17th century. Their independent discoveries became the cornerstone of calculus, with Newton emphasizing motion and Leibniz focusing on notation. The “prime” notation we still use today for derivatives was introduced by Leibniz! For a real-world application, think about how differentiation helps in optimizing solutions. For instance, companies often use derivatives to maximize profits or minimize costs. By calculating the derivative of a revenue function, they can find the number of units that should be produced to achieve maximum revenue. It's like having a secret weapon for making smart business decisions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad