Pregunta
Solve the following equations: \[ \begin{array}{l}\text { a) } x+15=-30 \\ x=-45 \\ \text { b) } 2 y+7=19\end{array} \]
Ask by Sanders Kirk. in Australia
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
x = -45 and y = 6.
Solución
Let's solve each equation step by step.
a) For the equation x + 15 = -30:
• Subtract 15 from both sides to isolate x:
x + 15 - 15 = -30 - 15
x = -45
b) For the equation 2y + 7 = 19:
• Subtract 7 from both sides to get:
2y = 19 - 7
2y = 12
• Divide both sides by 2 to solve for y:
y = 12 ÷ 2
y = 6
Thus, the solutions are:
x = -45 and y = 6.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To solve the given equations, let's go through them one at a time: For the first equation: \[ x + 15 = -30 \] To isolate \( x \), we subtract 15 from both sides: \[ x = -30 - 15 \] \[ x = -45 \] For the second equation: \[ 2y + 7 = 19 \] First, subtract 7 from both sides: \[ 2y = 19 - 7 \] \[ 2y = 12 \] Now, divide both sides by 2: \[ y = \frac{12}{2} \] \[ y = 6 \] So the solutions to the equations are: a) \( x = -45 \) b) \( y = 6 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium