Pregunta
upstudy study bank question image url

16. [-/2 Points] DETAILS MY NOTES SCALCET9 2.6.051. Find the horizontal and vertical asymptotes of the curve. You may want to use a graphing calculator (or computer) to check your work by graphing the curve and estimating the asymptotes. (Enter your answers as comma-separated lists. If an answer does not exist, enter DNE.) \[ y=\frac{x^{3}-x}{x^{2}-5 x+4} \] \( x= \) \( y= \)

Ask by Bowers Bright. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Vertical asymptote: x = 4 Horizontal asymptote: DNE

Solución

We begin with the function   y = (x³ – x)/(x² – 5x + 4). Step 1. Factor the numerator and denominator.  • The numerator factors as x³ – x = x(x² – 1) = x(x – 1)(x + 1).  • The denominator factors as x² – 5x + 4 = (x – 1)(x – 4). Thus, the function can be written as   y = [x(x – 1)(x + 1)]/[(x – 1)(x – 4)]. Step 2. Cancel the common factor. The factor (x – 1) cancels, provided x ≠ 1 (this leaves a hole at x = 1):   y = [x(x + 1)]/(x – 4). Step 3. Find the vertical asymptote. Vertical asymptotes occur where the denominator is zero (and the factor does not cancel). The denominator x – 4 equals zero when x = 4, so there is a vertical asymptote at   x = 4. Step 4. Find the horizontal asymptote. For the simplified function, y = [x(x + 1)]/(x – 4), note that the numerator is a quadratic polynomial (degree 2) and the denominator is linear (degree 1). Since the degree of the numerator exceeds the degree of the denominator, there is no horizontal asymptote. (There is, however, an oblique asymptote, which you may find by polynomial division. But the question asks only for horizontal and vertical asymptotes.) Final Answers:   Vertical asymptote: x = 4   Horizontal asymptote: DNE

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the horizontal and vertical asymptotes of the function \( y = \frac{x^{3}-x}{x^{2}-5x+4} \), we first need to analyze the denominator and numerator. For vertical asymptotes, we set the denominator equal to zero: \[ x^{2} - 5x + 4 = 0 \] Factoring gives us: \[ (x - 1)(x - 4) = 0 \] So, the vertical asymptotes are at \( x = 1 \) and \( x = 4 \). For horizontal asymptotes, we look at the behavior as \( x \) approaches infinity. Since the degree of the numerator (3) is greater than the degree of the denominator (2), there is no horizontal asymptote, which means we note it as DNE. Thus, the answers are: \( x = 1, 4 \) \( y = DNE \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad